【題目】如圖,將矩形ABCD沿對角線AC剪開,再把△ACD沿CA方向平移得到△A1C1D1,連結AD1,BC1.若∠ACB=30°,AB=1,CC1=x,△ACD與△A1C1D1重疊部分的面積為s,則下列結論:①△A1AD1≌△CC1B②當x=1時,四邊形ABC1D1是菱形 ③當x=2時,△BDD1為等邊三角形 ④s= (x﹣2)2(0<x<2),其中正確的有( )
A. 1 個B. 2 個C. 3 個D. 4 個
【答案】C
【解析】
①正確,根據(jù)SSS即可判斷;
②正確,證明四邊相等即可解決問題;
③正確,只要證明BD=DD1,∠BDD1=60°即可;
④錯誤,利用三角形的面積公式計算即可判定;
解:∵AC=A1C1,
∴AA1=CC1
∵BC=D1A1,∠AA1D1=∠BCC1,
∴△A1AD1≌△CC1B,故①正確,
在Rt△ABC中,∵∠ACB=30°,AB=1,
∴AC=A1C1=2,
當x=1時,AC1=CC1=1,
∴AC1=AB,
∵∠BAC=60°,
∴△ABC1是等邊三角形,
同法可證:△AD1C1是等邊三角形,
∴AB=BC1=AC1=AD1=C1D1,
∴四邊形ABC1D1是菱形,故②正確,
當x=2時,BD=AC=2,DD1=2,∠BDD1=60°,
∴△BDD1是等邊三角形,故③正確,
當0<x<2時,S=(2﹣x)(2﹣x)=(2﹣x)2,故④錯誤.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A、B的坐標分別為(0,4)、(4,0),點C在第一象限內(nèi),∠BAC=90°,AB=2AC,函數(shù)y=(x>0)的圖象經(jīng)過點C,將△ABC沿x軸的正方向向右平移m個單位長度,使點A恰好落在函數(shù)y=(x>0)的圖象上,則m的值為( 。
A. B. C. 3 D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,過A(-2, 0), C(0, 6)兩點的拋物線y=-x2+ax+b與x軸交于另一點B,點D是拋物線的頂點.
(1)求a、b的值;
(2)點P是x軸上的一個動點,過P作直線l//AC交拋物線于點Q.隨著點P的運動,若以A、P、Q、C為頂點的四邊形是平行四邊形,請直接寫出符合條件的點Q的坐標;
(3)在直線AC上是否存在一點M,使△BDM的周長最小,若存在,請找出點M并求出點M的坐標.若不存在,請說明理由。
備用圖
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用32m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設AB=xm.
(1)若花園的面積為252m2,求x的值;
(2)若在P處有一棵樹與墻CD,AD的距離分別是17m和6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細),求花園面積S的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AC為直徑作⊙O交BC于點D,過點D作⊙O的切線EF,交AB和AC的延長線于E、F.
(1)求證:FE⊥AB;
(2)當AE=6,sin∠CFD=時,求EB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交
于點A(1,4)、點B(-4,n).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△OAB的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點E在CD上,將△BCE沿BE折疊,點C恰落在邊AD上的點F處;點G在AF上,將△ABG沿BG折疊,點A恰落在線段BF上的點H處,有下列結論:
①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.
其中正確的是__.(把所有正確結論的序號都選上)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與軸交于,兩點(點在點的左邊)與軸交于點,連接,過點作直線的平行線交拋物線于另一點,交軸于點,則的值為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題滿分12分)在數(shù)學興趣小組活動中,小明進行數(shù)學探究活動.將邊長為2的正方形ABCD與邊長為的正方形AEFG按圖1位置放置,AD與AE在同一條直線上,AB與AG在同一條直線上.
(1)小明發(fā)現(xiàn),請你幫他說明理由.
(2)如圖2,小明將正方形ABCD繞點A逆時針旋轉,當點B恰好落在線段DG上時,請你幫他求出此時BE的長.
(3)如圖3,若小明將正方形ABCD繞點A繼續(xù)逆時針旋轉,線段DG與線段BE將相交,交點為H,寫出△與△面積之和的最大值,并簡要說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com