【題目】如圖,將矩形ABCD沿對角線AC剪開,再把ACD沿CA方向平移得到A1C1D1,連結AD1,BC1.若∠ACB30°,AB1CC1x,ACDA1C1D1重疊部分的面積為s,則下列結論:①A1AD1≌△CC1B②當x1時,四邊形ABC1D1是菱形 ③當x2時,BDD1為等邊三角形 s x220x2),其中正確的有(  )

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

正確,根據(jù)SSS即可判斷;

正確,證明四邊相等即可解決問題;

正確,只要證明BDDD1,∠BDD160°即可;

錯誤,利用三角形的面積公式計算即可判定;

解:∵ACA1C1

AA1CC1

BCD1A1,∠AA1D1=∠BCC1,

∴△A1AD1≌△CC1B,故①正確,

RtABC中,∵∠ACB30°,AB1,

ACA1C12

x1時,AC1CC11,

AC1AB,

∵∠BAC60°,

∴△ABC1是等邊三角形,

同法可證:AD1C1是等邊三角形,

ABBC1AC1AD1C1D1,

∴四邊形ABC1D1是菱形,故②正確,

x2時,BDAC2DD12,∠BDD160°

∴△BDD1是等邊三角形,故③正確,

0x2時,S2x2x)=2x2,故④錯誤.

故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A、B的坐標分別為(0,4)、(4,0),點C在第一象限內(nèi),∠BAC=90°,AB=2AC,函數(shù)y=(x>0)的圖象經(jīng)過點C,將△ABC沿x軸的正方向向右平移m個單位長度,使點A恰好落在函數(shù)y=(x>0)的圖象上,則m的值為( 。

A. B. C. 3 D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,過A(2, 0), C(0, 6)兩點的拋物線y=-x2axbx軸交于另一點B,點D是拋物線的頂點.

(1)求a、b的值;

(2)點Px軸上的一個動點,過P作直線l//AC交拋物線于點Q.隨著點P的運動,若以A、P、QC為頂點的四邊形是平行四邊形,請直接寫出符合條件的點Q的坐標;

(3)在直線AC上是否存在一點M,使BDM的周長最小,若存在,請找出點M并求出點M的坐標.若不存在,請說明理由。

備用圖

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用32m長的籬笆圍成一個矩形花園ABCD(籬笆只圍ABBC兩邊),設ABxm

(1)若花園的面積為252m2,求x的值;

(2)若在P處有一棵樹與墻CD,AD的距離分別是17m6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細),求花園面積S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,以AC為直徑作OBC于點D,過點DO的切線EF,交ABAC的延長線于E、F

1)求證:FEAB

2)當AE6,sinCFD時,求EB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交

于點A(1,4)、點B(-4,n).

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)求△OAB的面積;

(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點ECD上,將BCE沿BE折疊,點C恰落在邊AD上的點F處;點GAF上,將ABG沿BG折疊,點A恰落在線段BF上的點H處,有下列結論:

①∠EBG=45°;DEF∽△ABG;SABG=SFGH;AG+DF=FG.

其中正確的是__.(把所有正確結論的序號都選上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸交于,兩點(點在點的左邊)與軸交于點,連接,過點作直線的平行線交拋物線于另一點,交軸于點,則的值為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題滿分12分)在數(shù)學興趣小組活動中,小明進行數(shù)學探究活動.將邊長為2的正方形ABCD與邊長為的正方形AEFG按圖1位置放置,ADAE在同一條直線上,ABAG在同一條直線上.

1)小明發(fā)現(xiàn),請你幫他說明理由.

2)如圖2,小明將正方形ABCD繞點A逆時針旋轉,當點B恰好落在線段DG上時,請你幫他求出此時BE的長.

3)如圖3,若小明將正方形ABCD繞點A繼續(xù)逆時針旋轉,線段DG與線段BE將相交,交點為H,寫出面積之和的最大值,并簡要說明理由.

查看答案和解析>>

同步練習冊答案