閱讀材料:
關于三角函數(shù)還有如下的公式:
sin(α±β)=sinαcosβ±cosasinβ
tan(α±β)=
利用這些公式可以將一些不是特殊角的三角函數(shù)轉化為特殊角的三角函數(shù)來求值.
例:tan15°=tan(45°-30°)===
根據以上閱讀材料,請選擇適當?shù)墓浇獯鹣旅鎲栴}
(1)計算:sin15°;
(2)烏蒙鐵塔是六盤水市標志性建筑物之一(圖1),小華想用所學知識來測量該鐵塔的高度,如圖2,小華站在離塔底A距離7米的C處,測得塔頂?shù)难鼋菫?5°,小華的眼睛離地面的距離DC為1.62米,請幫助小華求出烏蒙鐵塔的高度.(精確到0.1米,參考數(shù)據,

【答案】分析:(1)把15°化為45°-30°以后,再利用公式sin(α±β)=sinαcosβ±cosasinβ計算,即可求出sin15°的值;
(2)先根據銳角三角函數(shù)的定義求出BE的長,再根據AB=AE+BE即可得出結論.
解答:解:(1)sin15°=sin(45°-30°)=sin45°cos30°-cos45°sin30°=×-×=-=;

(2)在Rt△BDE中,∵∠BED=90°,∠BDE=75°,DE=AC=7米,
∴BE=DE•tan∠BDE=DE•tan75°.
∵tan75°=tan(45°+30°)===2+
∴BE=7(2+)=14+7,
∴AB=AE+BE=1.62+14+7≈27.7(米).
答:烏蒙鐵塔的高度約為27.7米.
點評:本題考查了:
(1)特殊角的三角函數(shù)值的應用,屬于新題型,解題的關鍵是根據題目中所給信息結合特殊角的三角函數(shù)值來求解.
(2)解直角三角形的應用-仰角俯角問題,先根據銳角三角函數(shù)的定義得出BE的長是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

(2013•六盤水)閱讀材料:
關于三角函數(shù)還有如下的公式:
sin(α±β)=sinαcosβ±cosasinβ
tan(α±β)=
tanα±tanβ
1
+
.
tanα•tanβ

利用這些公式可以將一些不是特殊角的三角函數(shù)轉化為特殊角的三角函數(shù)來求值.
例:tan15°=tan(45°-30°)=
tan45°-tan30°
1+tan45°•tan30°
=
1-
3
3
1+1×
3
3
=
(3-
3
)(3-
3
)
(3+
3
)(3-
3
)
=
12-6
3
6
=2-
3

根據以上閱讀材料,請選擇適當?shù)墓浇獯鹣旅鎲栴}
(1)計算:sin15°;
(2)烏蒙鐵塔是六盤水市標志性建筑物之一(圖1),小華想用所學知識來測量該鐵塔的高度,如圖2,小華站在離塔底A距離7米的C處,測得塔頂?shù)难鼋菫?5°,小華的眼睛離地面的距離DC為1.62米,請幫助小華求出烏蒙鐵塔的高度.(精確到0.1米,參考數(shù)據
3
=1.732
2
=1.414

查看答案和解析>>

科目:初中數(shù)學 來源:2013年初中畢業(yè)升學考試(貴州六盤水卷)數(shù)學(帶解析) 題型:解答題

閱讀材料:
關于三角函數(shù)還有如下的公式:


利用這些公式可以將一些不是特殊角的三角函數(shù)轉化為特殊角的三角函數(shù)來求值.
例:
=
=
=
=
==

根據以上閱讀材料,請選擇適當?shù)墓浇獯鹣旅鎲栴}
(1)計算:sin15°;
(2)烏蒙鐵塔是六盤水市標志性建筑物之一(圖1),小華想用所學知識來測量該鐵塔的高度,如圖2,小華站在離塔底A距離7米的C處,測得塔頂?shù)难鼋菫?5°,小華的眼睛離地面的距離DC為1.62米,請幫助小華求出烏蒙鐵塔的高度.(精確到0.1米,參考數(shù)據

查看答案和解析>>

科目:初中數(shù)學 來源:2013年初中畢業(yè)升學考試(貴州六盤水卷)數(shù)學(解析版) 題型:解答題

閱讀材料:

關于三角函數(shù)還有如下的公式:

利用這些公式可以將一些不是特殊角的三角函數(shù)轉化為特殊角的三角函數(shù)來求值.

例:

=

=

=

=

==

根據以上閱讀材料,請選擇適當?shù)墓浇獯鹣旅鎲栴}

(1)計算:sin15°;

(2)烏蒙鐵塔是六盤水市標志性建筑物之一(圖1),小華想用所學知識來測量該鐵塔的高度,如圖2,小華站在離塔底A距離7米的C處,測得塔頂?shù)难鼋菫?5°,小華的眼睛離地面的距離DC為1.62米,請幫助小華求出烏蒙鐵塔的高度.(精確到0.1米,參考數(shù)據

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀材料:

關于三角函數(shù)還有如下的公式:

sin(α±β)=sinαcosβ±cosasinβ

tan(α±β)=

利用這些公式可以將一些不是特殊角的三角函數(shù)轉化為特殊角的三角函數(shù)來求值.

例:tan15°=tan(45°﹣30°)===

根據以上閱讀材料,請選擇適當?shù)墓浇獯鹣旅鎲栴}

(1)計算:sin15°;

(2)烏蒙鐵塔是六盤水市標志性建筑物之一(圖1),小華想用所學知識來測量該鐵塔的高度,如圖2,小華站在離塔底A距離7米的C處,測得塔頂?shù)难鼋菫?5°,小華的眼睛離地面的距離DC為1.62米,請幫助小華求出烏蒙鐵塔的高度.(精確到0.1米,參考數(shù)據,

查看答案和解析>>

同步練習冊答案