如圖1,已知拋物線y=ax2-2ax+b經(jīng)過(guò)梯形OABC的四個(gè)頂點(diǎn),若BC=10,梯形OABC的面積為18.
(1)求拋物線解析式;
(2)將圖1中梯形OABC的上下底邊所在的直線OA、CB以相同的速度同時(shí)向上平移,平移后的兩條直線分別交拋物線于點(diǎn)O1、A1、C1、B1,得到如圖2的梯形O1A1B1C1.設(shè)梯形O1A1B1C1的面積為S,A1、B1的坐標(biāo)分別為(x1,y1)、(x2,y2).用含S的代數(shù)式表示x2-x1,并求出當(dāng)S=36時(shí)點(diǎn)A1的坐標(biāo);
(3)如圖3,設(shè)圖1中點(diǎn)D坐標(biāo)為(1,3),M為拋物線的頂點(diǎn),動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿著線段BC運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)D出發(fā),以與點(diǎn)P相同的速度沿著線段DM運(yùn)動(dòng).P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)Q到達(dá)點(diǎn)M時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)P、Q兩點(diǎn)的運(yùn)動(dòng)時(shí)間為t,是否存在某一時(shí)刻t,使得直線PQ、直線AB、x軸圍成的三角形與直線PQ、直線AB、拋物線的對(duì)稱(chēng)軸圍成的三角形相似?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由.
(1)∵y=ax2-2ax+b=a(x-1)2-a+b,
∴對(duì)稱(chēng)軸為:直線x=1,
∴點(diǎn)A的坐標(biāo)為(2,0);
∵BC=10,梯形OABC的面積為18,
∴梯形OABC的高為:18×2÷(10+2)=3,
∴B(10÷2+1,3),即B(6,3),
C(1-10÷2,3),即C(-4,3).
將O(0,0),B(6,3)代入y=ax2-2ax+b,
b=0
36a-12a+b=3

解得
a=
1
8
b=0
,
∴拋物線解析式為:y=
1
8
x2-
1
4
x;

(2)由題意得y2-y1=3,y2-y1=
1
8
x22-
1
4
x2-
1
8
x12+
1
4
x1=3,
得:(x2-x1)[
1
8
(x2+x1)-
1
4
]=3①,
S=
2(x1-1+x2-1)×3
2
=3(x1+x2)-6,
得:x1+x2=
S
3
+2②,
把②代入①并整理得:x2-x1=
72
s
(S>0),
當(dāng)s=36時(shí),
x2+x1=14
x2-x1=2
,
解得:
x1=6
x2=8
,
把x1=6代入拋物線解析式,得y1=
1
8
×62-
1
4
×6=3,
∴點(diǎn)A1(6,3);

(3)存在t=
20
7
秒,可使直線PQ、直線AB、x軸圍成的三角形與直線PQ、直線AB、拋物線的對(duì)稱(chēng)軸圍成的三角形相似.理由如下:
易知直線AB的解析式為y=
3
4
x-
3
2
,可得直線AB與對(duì)稱(chēng)軸的交點(diǎn)E的坐標(biāo)為(1,-
3
4
),
∴BD=5,DE=
15
4
,DP=5-t,DQ=t,
當(dāng)PQAB時(shí),
DQ
DE
=
DP
DB
,
t
15
4
=
5-t
5
,解得t=
15
7

設(shè)直線PQ與直線AB、x軸的交點(diǎn)分別為點(diǎn)F、G.假設(shè)直線PQ、直線AB、x軸圍成的三角形與直線PQ、直線AB、拋物線的對(duì)稱(chēng)軸圍成的三角形相似.下面分兩種情況討論:
①當(dāng)0<t<
15
7
時(shí),如圖3-1;
∵△FQE△FAG,
∴∠FGA=∠FEQ,
∴∠DPQ=∠DEB;
易得△DPQ△DEB,
DQ
DB
=
DP
DE
,即
t
5
=
5-t
15
4
,
解得t=
20
7
15
7
,
∴t=
20
7
不合題意,舍去;
②當(dāng)
15
7
<t<3
1
8
時(shí),如圖3-2;
∵△FAG△FQE,
∴∠FAG=∠FQE,
∵∠DQP=∠FQE,∠FAG=∠EBD,
∴∠DQP=∠DBE,
易得△DPQ△DEB,
DQ
DB
=
DP
DE
,即
t
5
=
5-t
15
4
,
解得t=
20
7
,符合題意.
綜上,可知當(dāng)t=
20
7
秒時(shí),直線PQ、直線AB、x軸圍成的三角形與直線PQ、直線AB、拋物線的對(duì)稱(chēng)軸圍成的三角形相似.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:在平面直角坐標(biāo)系中,拋物線y=-
1
4
x2+bx+3
交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,且對(duì)稱(chēng)軸為x=-2,點(diǎn)P(0,t)是y軸上的一個(gè)動(dòng)點(diǎn).

(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo).
(2)如圖1,當(dāng)0≤t≤4時(shí),設(shè)△PAD的面積為S,求出S與t之間的函數(shù)關(guān)系式;S是否有最小值?如果有,求出S的最小值和此時(shí)t的值.
(3)如圖2,當(dāng)點(diǎn)P運(yùn)動(dòng)到使∠PDA=90°時(shí),Rt△ADP與Rt△AOC是否相似?若相似,求出點(diǎn)P的坐標(biāo);若不相似,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y=4x2-7x+4與直線y=x+b相交于A、B兩點(diǎn).
(1)求b的取值范圍;
(2)當(dāng)AB=2時(shí),求b的值;
(3)設(shè)坐標(biāo)原點(diǎn)為O,在(2)的條件下,求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在直角坐標(biāo)系中,二次函數(shù)的頂點(diǎn)為C(4,-3),且在x軸上截得的線段AB=6,則二次函數(shù)的表達(dá)式為_(kāi)_____;若拋物線與y軸交于點(diǎn)D,則四邊形DACB的面積是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知平面直角坐標(biāo)系xOy中,點(diǎn)A(m,6),B(n,1)為兩動(dòng)點(diǎn),其中0<m<3,連接OA,OB,OA⊥OB.
(1)求證:mn=-6;
(2)當(dāng)S△AOB=10時(shí),拋物線經(jīng)過(guò)A,B兩點(diǎn)且以y軸為對(duì)稱(chēng)軸,求拋物線對(duì)應(yīng)的二次函數(shù)的關(guān)系式;
(3)在(2)的條件下,設(shè)直線AB交y軸于點(diǎn)F,過(guò)點(diǎn)F作直線l交拋物線于P,Q兩點(diǎn),問(wèn)是否存在直線l,使S△POF:S△QOF=1:3?若存在,求出直線l對(duì)應(yīng)的函數(shù)關(guān)系式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,小明的父親在相距2米的兩棵樹(shù)間拴了一根繩子,給小明做了一個(gè)簡(jiǎn)易的秋千.拴繩子的地方距地面高都是2.5米,繩子自然下垂呈拋物線狀,身高1米的小明距較近的那棵樹(shù)0.5米時(shí),頭部剛好接觸到繩子,
(1)選取合適的點(diǎn)作為原點(diǎn),建立直角坐標(biāo)系,求出拋物線的解析式;
(2)求繩子的最低點(diǎn)距地面的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知正方形的邊長(zhǎng)為x,面積為y
(1)寫(xiě)出y與x的函數(shù)關(guān)系式;
(2)當(dāng)面積為25時(shí),正方形的邊長(zhǎng)是多少?
(3)畫(huà)出此函數(shù)的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,一個(gè)小球由靜止開(kāi)始在一個(gè)斜坡上向下滾動(dòng),通過(guò)儀器觀察得到小球滾動(dòng)的距離s(m)與時(shí)間t(s)的數(shù)據(jù)如下表.那么s與t之間的函數(shù)關(guān)系式是s=______.
時(shí)間t/s1234
距離s/m281832

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在矩形ABCD中,AB=2AD,線段EF=10.在EF上取一點(diǎn)M,分別以EM、MF為一邊作矩形EMNH、矩形MFGN,使矩形MFGN矩形ABCD.令MN=x,當(dāng)x為何值時(shí),矩形EMNH的面積S有最大值,最大值是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案