(1999•福州)用換元法解方程:
【答案】分析:此方程可用換元法解方程,設(shè)y=,則原方程可化為關(guān)于y的一元二次方程.先求y,再求x,結(jié)果需檢驗(yàn).
解答:解:設(shè),則原方程可化為y2+4y-21=0. (2分)
解此方程得:y1=-7,y2=3.(3分)
當(dāng)y=-7時(shí),方程=-7無(wú)解(4分)
當(dāng)y=3時(shí),方程=3,
整理可得:x2-4x-5=0,
解此方程可得:x1=5,x2=-1.(5分)
經(jīng)檢驗(yàn)x1=5,x2=-1都是原方程的根,
∴原方程的根是x1=5,x2=-1.(6分)
點(diǎn)評(píng):在解無(wú)理方程時(shí)最常用的方法是換元法,一般方法是通過(guò)觀察確定用來(lái)?yè)Q元的式子,如本題中設(shè)y=,需要注意的是用來(lái)?yè)Q元的式子為x2-4x=y2+,則y2+4y-21=0.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:1999年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(02)(解析版) 題型:解答題

(1999•福州)已知:二次函數(shù)y=x2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(-1,12)、B(2,-3).
(1)求該二次函數(shù)的解析式;
(2)用配方法把由(1)所得的解析式化為y=(x-h)2+k的形式,并求出該拋物線的頂點(diǎn)坐標(biāo)和對(duì)稱軸;
(3)求拋物線與x軸的兩個(gè)交點(diǎn)C、D的坐標(biāo)及△ACD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:1999年福建省福州市中考數(shù)學(xué)試卷 題型:解答題

(1999•福州)已知:二次函數(shù)y=x2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(-1,12)、B(2,-3).
(1)求該二次函數(shù)的解析式;
(2)用配方法把由(1)所得的解析式化為y=(x-h)2+k的形式,并求出該拋物線的頂點(diǎn)坐標(biāo)和對(duì)稱軸;
(3)求拋物線與x軸的兩個(gè)交點(diǎn)C、D的坐標(biāo)及△ACD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:1999年全國(guó)中考數(shù)學(xué)試題匯編《一元二次方程》(04)(解析版) 題型:解答題

(1999•福州)用換元法解方程:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:1999年福建省福州市中考數(shù)學(xué)試卷 題型:解答題

(1999•福州)已知一次函數(shù)y=(m為實(shí)數(shù))的圖象為直線l,l分別交x,y于A,B兩點(diǎn),以坐標(biāo)原點(diǎn)O為圓心的圓的半徑為1.
(1)求A、B兩點(diǎn)的坐標(biāo)(用含m的代數(shù)式表示);
(2)設(shè)點(diǎn)O到直線l的距離為d,試用含m的代數(shù)式表示d,并求出當(dāng)直線1與⊙O相切時(shí),m的值;
(3)當(dāng)⊙O被直線l所截得的弦長(zhǎng)等于1時(shí),求m的值及直線l與⊙O的交點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案