【題目】如圖,N,C,A 三點在同一直線上,在△ ABC 中,∠A:∠ABC:∠ACB=3:5:10,又△MNC≌△ABC,則∠BCM:∠BCN 等于( )

A.1:2
B.1:3
C.2:3
D.1:4

【答案】D
【解析】∵∠A:∠ABC:∠ACB=3:5:10,
設∠A=3x,∠ABC=5x,∠ACB=10x,
∠A+∠ABC+∠ACB=180°,
∴3x+5x+10x=180°,
∴x=1
∠A=30°,∠ABC=50°,∠ACB=100°,
△MNC≌△ABC,
∠MCN=∠ACB=100°,
∠BCN+∠ACB=180°
∠BCN=180°-∠ACB=180°-100°=80°,
∠MCN=∠BCM+∠BCN,
∠BCM=∠MCN-∠BCN=100°-80°=20°,
∠BCM:∠BCN=20°:80°=1:4,
所以答案是:B.
【考點精析】本題主要考查了對頂角和鄰補角和三角形的內角和外角的相關知識點,需要掌握兩直線相交形成的四個角中,每一個角的鄰補角有兩個,而對頂角只有一個;三角形的三個內角中,只可能有一個內角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內角的和;三角形的一個外角大于任何一個和它不相鄰的內角才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為厲行節(jié)能減排,倡導綠色出行,今年3月以來.“共享單車”(俗稱“小黃車”)公益活動登陸我市中心城區(qū),某公司擬在甲、乙兩個街道社區(qū)投放一批“小黃車”,這批自行車包括A、B兩種不同款型,請回答下列問題:

問題1:單價

該公司早期在甲街區(qū)進行了試點投放,共投放A、B兩型自行車各50輛,投放成本共計7500元,其中B型車的成本單價比A型車高10元,A、B兩型自行車的單價各是多少?

問題2:投放方式

該公司決定采取如下投放方式:甲街區(qū)每1000人投放a輛“小黃車”,乙街區(qū)每1000人投放 輛“小黃車”,按照這種投放方式,甲街區(qū)共投放1500輛,乙街區(qū)共投放1200輛,如果兩個街區(qū)共有15萬人,試求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知(9n238,則n_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知3是關于x的方程2x﹣a=1的解,則a的值為(
A.﹣5
B.5
C.7
D.﹣7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】分解因式:﹣2x2y+16xy﹣32y=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點(3,﹣2)關于原點對稱的點是(
A.(﹣3,2)
B.(﹣3,﹣2)
C.(3,﹣2)
D.(3,2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列圖形:①角;②直角三角形;③等邊三角形;④線段;⑤等腰三角形;⑥平行四邊形.其中一定是軸對稱圖形的有_________個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】求下列x的值.

x12=4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線過點,,與軸交于點.

(1)求拋物線的函數(shù)表達式;

(2)若點在拋物線的對稱軸上,求的周長的最小值;

(3)在拋物線的對稱軸上是否存在點,使是直角三角形?若存在,直接寫出點的坐標,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案