【題目】若將代數(shù)式中的任意兩個字母交換,代數(shù)式不變,則稱這個代數(shù)式為完全對稱式,如就是完全對稱式(代數(shù)式中換成b,b換成,代數(shù)式保持不變).下列三個代數(shù)式:①;②;③.其中是完全對稱式的是( )
A.①②B.①③C.②③D.①②③
【答案】A
【解析】
在正確理解完全對稱式的基礎上,逐一進行判斷,即可得出結論.
解:根據(jù)信息中的內容知,只要任意兩個字母交換,代數(shù)式不變,就是完全對稱式,則:①(a-b)2=(b-a)2;是完全對對稱式.故此選項正確.
②將代數(shù)式ab+bc+ca中的任意兩個字母交換,代數(shù)式不變,故ab+bc+ca是完全對稱式,ab+bc+ca中ab對調后ba+ac+cb,bc對調后ac+cb+ba,ac對調后cb+ba+ac,都與原式一樣,故此選項正確;
③a2b+b2c+c2a 若只ab對調后b2a+a2c+c2b 與原式不同,只在特殊情況下(ab相同時)才會與原式的值一樣
∴將a與b交換,a2b+b2c+c2a變?yōu)?/span>ab2+a2c+bc2.故a2b+b2c+c2a不是完全對稱式.故此選項錯誤,
所以①②是完全對稱式,③不是
故選擇:A.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知數(shù)軸上點表示的數(shù)為,點表示的數(shù)為,以為邊在數(shù)軸的上方作正方形ABCD.動點從點出發(fā),以每秒個單位長度的速度沿數(shù)軸正方向勻速運動,同時動點從點出發(fā),以每秒個單位長度的速度向點勻速運動,到達點后再以同樣的速度沿數(shù)軸正方向勻速運動,設運動時間為秒.
(1)若點在線段.上運動,當t為何值時,?
(2)若點在線段上運動,連接,當t為何值時,三角形的面積等于正方形面積的?
(3)在點和點運動的過程中,當為何值時,點與點恰好重合?
(4)當點在數(shù)軸上運動時,是否存在某-時刻t,使得線段的長為,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC,AE⊥BC于點E,∠ADC的平分線交AE于點O,以點O為圓心,OA為半徑的圓經(jīng)過點B,交BC于另一點F.
(1)求證:CD與⊙O相切;
(2)若BF=24,OE=5,求tan∠ABC的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:若以一條線段為對角線作正方形,則稱該正方形為這條線段的“對角線正方形”.例如,圖①中正方形ABCD即為線段BD的“對角線正方形”.如圖②,在△ABC中,∠ABC=90°,AB=3cm,BC=4cm,點P從點C出發(fā),沿折線CA﹣AB以5cm/s的速度運動,當點P與點B不重合時,作線段PB的“對角線正方形”,設點P的運動時間為t(s),線段PB的“對角線正方形”的面積為S(cm2).
(1)如圖③,借助虛線的小正方形網(wǎng)格,畫出線段AB的“對角線正方形”.
(2)當線段PB的“對角線正方形”有兩邊同時落在△ABC的邊上時,求t的值.
(3)當點P沿折線CA﹣AB運動時,求S與t之間的函數(shù)關系式.
(4)在整個運動過程中,當線段PB的“對角線正方形”至少有一個頂點落在∠A的平分線上時,直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線,經(jīng)過A(1,0)、B(7,0)兩點,交y軸于D點,以AB為邊在x軸上方作等邊△ABC.
(1)求拋物線的解析式;
(2)在x軸上方的拋物線上是否存在點M,是S△ABM=S△ABC?若存在,請求出點M的坐標;若不存在,請說明理由;
(3)如圖2,E是線段AC上的動點,F是線段BC上的動點,AF與BE相交于點P.
①若CE=BF,試猜想AF與BE的數(shù)量關系及∠APB的度數(shù),并說明理由;
②若AF=BE,當點E由A運動到C時,請直接寫出點P經(jīng)過的路徑長(不需要寫過程).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(0,2),動點B、C從原點O同時出發(fā),分別以每秒1個單位和每秒2個單位長度的速度沿x軸正方向運動,以點A為圓心,OB的長為半徑畫圓;以BC為一邊,在x軸上方作等邊△BCD.設運動的時間為t秒,當⊙A與△BCD的邊BD所在直線相切時,t的值為( )
A. B. C. 4+6 D. 4-6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,點E在對角線AC上,連接EB、ED.
(1)求證:△BCE≌△DCE;
(2)延長BE交AD于點F,若∠DEB=140,求∠AFE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題探究
(1)如圖①,已知正方形ABCD的邊長為4.點M和N分別是邊BC、CD上兩點,且BM=CN,連接AM和BN,交于點P.猜想AM與BN的位置關系,并證明你的結論.
(2)如圖②,已知正方形ABCD的邊長為4.點M和N分別從點B、C同時出發(fā),以相同的速度沿BC、CD方向向終點C和D運動.連接AM和BN,交于點P,求△APB周長的最大值;
問題解決
(3)如圖③,AC為邊長為2的菱形ABCD的對角線,∠ABC=60°.點M和N分別從點B、C同時出發(fā),以相同的速度沿BC、CA向終點C和A運動.連接AM和BN,交于點P.求△APB周長的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算;
(1)23=_____;
(2)﹣2+|﹣2|=_____;
(3)﹣6×(﹣16)=_____;
(4)=_____;
(5)2a+a=_____;
(6)=_____;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com