如圖,在矩形紙片ABCD中,AB=8,BC=10.E、F為AB、BC邊上兩個(gè)動(dòng)點(diǎn),以EF為折痕折疊紙片,使點(diǎn)B恰好落在A(yíng)D邊上的點(diǎn)P處.當(dāng)E、F運(yùn)動(dòng)時(shí),點(diǎn)P也在一定范圍內(nèi)移動(dòng),則這個(gè)移動(dòng)范圍的最大距離為
4
4
分析:根據(jù)翻折變換,當(dāng)點(diǎn)F與點(diǎn)C重合時(shí),點(diǎn)P到達(dá)最左邊,當(dāng)點(diǎn)E與點(diǎn)A重合時(shí),點(diǎn)P到達(dá)最右邊,所以點(diǎn)P就在這兩個(gè)點(diǎn)之間移動(dòng),分別求出這兩個(gè)位置時(shí)AP的長(zhǎng)度,然后兩數(shù)相減就是最大距離.
解答:解:如圖1,當(dāng)點(diǎn)F與點(diǎn)C重合時(shí),根據(jù)翻折對(duì)稱(chēng)性可得
PC=BC=10,
在Rt△PCD中,PC2=PD2+CD2,
即102=(10-AP)2+82
解得AP=4,
如圖2,當(dāng)點(diǎn)E與點(diǎn)A重合時(shí),根據(jù)翻折對(duì)稱(chēng)性可得AP=AB=8,
∵8-4=4,
∴點(diǎn)E在BC邊上可移動(dòng)的最大距離為4.
故填:4.
點(diǎn)評(píng):本題考查的是翻折變換及勾股定理,熟知圖形翻折不變性的性質(zhì)是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在矩形紙片ABCD中,AB=8,BC=6,點(diǎn)E在A(yíng)B上,將△DAE沿DE折疊,使點(diǎn)A落在對(duì)角線(xiàn)BD上的點(diǎn)A′處,則AE的長(zhǎng)為
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•成都一模)如圖,在矩形紙片ABCD中,AB=3,BC=4,把△BCD沿對(duì)角線(xiàn)BD折疊,使點(diǎn)C落在C′處,BC′交AD于點(diǎn)G;E、F分別是C′D和BD上的點(diǎn),線(xiàn)段EF交AD于點(diǎn)H,把△FDE沿EF折疊,使點(diǎn)D落在D′處,點(diǎn)D′恰好與點(diǎn)A重合,則EF=
25
12
25
12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•黃石模擬)如圖,在矩形紙片ABCD中,AB=3,BC=4.把△BCD沿對(duì)角線(xiàn)BD折疊,使點(diǎn)C落在E處,BE交AD于點(diǎn)F;
(1)求證:AF=EF;
(2)求tan∠ABF的值;
(3)連接AC交BE于點(diǎn)G,求AG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

動(dòng)手操作:如圖,在矩形紙片ABCD中,AB=3,AD=5.如圖所示折疊紙片,使點(diǎn)A落在BC邊上的A′處,折痕為PQ,當(dāng)點(diǎn)A′在BC邊上移動(dòng)時(shí),折痕的端點(diǎn)P、Q也隨之移動(dòng).若限定點(diǎn)P、Q分別在A(yíng)B、AD邊上移動(dòng).
求:(1)當(dāng)點(diǎn)Q與點(diǎn)D重合時(shí),A′C的長(zhǎng)是多少?
(2)點(diǎn)A′在BC邊上可移動(dòng)的最大距離是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案