如圖,已知△BAD和△BCE均為等腰直角三角形,∠BAD=∠BCE=90°,點M為DE的中點,過點E與AD平行的直線交射線AM于點N.
(1)當A,B,C三點在同一直線上時(如圖1),求證:M為AN的中點;
(2)將圖1中的△BCE繞點B旋轉,當A,B,E三點在同一直線上時(如圖2),求證:△ACN為等腰直角三角形;
(3)將圖1中△BCE繞點B旋轉到圖3位置時,(2)中的結論是否仍成立?若成立,試證明之,若不成立,請說明理由.
(1)證明:如圖1,
∵EN∥AD,
∴∠MAD=∠MNE,∠ADM=∠NEM.
∵點M為DE的中點,
∴DM=EM.
在△ADM和△NEM中,
∴.
∴△ADM≌△NEM.
∴AM=MN.
∴M為AN的中點.
(2)證明:如圖2,
∵△BAD和△BCE均為等腰直角三角形,
∴AB=AD,CB=CE,∠CBE=∠CEB=45°.
∵AD∥NE,
∴∠DAE+∠NEA=180°.
∵∠DAE=90°,
∴∠NEA=90°.
∴∠NEC=135°.
∵A,B,E三點在同一直線上,
∴∠ABC=180°﹣∠CBE=135°.
∴∠ABC=∠NEC.
∵△ADM≌△NEM(已證),
∴AD=NE.
∵AD=AB,
∴AB=NE.
在△ABC和△NEC中,
∴△ABC≌△NEC.
∴AC=NC,∠ACB=∠NCE.
∴∠ACN=∠BCE=90°.
∴△ACN為等腰直角三角形.
(3)△ACN仍為等腰直角三角形.
證明:如圖3,此時A、B、N三點在同一條直線上.
∵AD∥EN,∠DAB=90°,
∴∠ENA=∠DAN=90°.
∵∠BCE=90°,
∴∠CBN+∠CEN=360°﹣90°﹣90°=180°.
∵A、B、N三點在同一條直線上,
∴∠ABC+∠CBN=180°.
∴∠ABC=∠NEC.
∵△ADM≌△NEM(已證),
∴AD=NE.
∵AD=AB,
∴AB=NE.
在△ABC和△NEC中,
∴△ABC≌△NEC.
∴AC=NC,∠ACB=∠NCE.
∴∠ACN=∠BCE=90°.
∴△ACN為等腰直角三角形.
科目:初中數(shù)學 來源: 題型:
某校為了了解本校九年級學生的視力情況(視力情況分為:不近視,輕度近視,中度近視,重度近視),隨機對九年級的部分學生進行了抽樣調(diào)查,將調(diào)查結果進行整理后,繪制了如下不完整的統(tǒng)計圖,其中不近視與重度近視人數(shù)的和是中度近視人數(shù)的2倍.
請你根據(jù)以上信息解答下列問題:
(1)求本次調(diào)查的學生人數(shù);
(2)補全條形統(tǒng)計圖,在扇形統(tǒng)計圖中,“不近視”對應扇形的圓心角度數(shù)是 144 度;
(3)若該校九年級學生有1050人,請你估計該校九年級近視(包括輕度近視,中度近視,重度近視)的學生大約有多少人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖是兩個全等的含30°角的直角三角形.
(1)將其相等邊拼在一起,組成一個沒有重疊部分的平面圖形,請你畫出所有不同的拼接平面圖形的示意圖;
(2)若將(1)中平面圖形分別印制在質(zhì)地、形狀、大小完全相同的卡片上,洗勻后從中隨機抽取一張,求抽取的卡片上平面圖形為軸對稱圖形的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
某地統(tǒng)計局對2013年各縣市的固定資產(chǎn)投資情況進行了統(tǒng)計,并繪成了以下圖表,請根據(jù)相關信息解答下列問題:下列結論不正確的是( )
A.2013年某市固定資產(chǎn)投資總額為200億元
B.2013年某市各單位固定資產(chǎn)投資額的中位數(shù)是16億元
C.2013年A縣固定資產(chǎn)投資額為占總額的30%
D.2013年固定資產(chǎn)投資扇形統(tǒng)計圖中表示A地的扇形的圓心角為110°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,是由幾個相同的小正體搭成的幾何體的三視圖,則搭成這個幾何體的小正方體的個數(shù)是( )
A.3個 B.4個 C.5個 D.6個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com