如圖,已知△BAD和△BCE均為等腰直角三角形,∠BAD=∠BCE=90°,點M為DE的中點,過點E與AD平行的直線交射線AM于點N.

(1)當A,B,C三點在同一直線上時(如圖1),求證:M為AN的中點;

(2)將圖1中的△BCE繞點B旋轉,當A,B,E三點在同一直線上時(如圖2),求證:△ACN為等腰直角三角形;

(3)將圖1中△BCE繞點B旋轉到圖3位置時,(2)中的結論是否仍成立?若成立,試證明之,若不成立,請說明理由.


(1)證明:如圖1,

∵EN∥AD,

∴∠MAD=∠MNE,∠ADM=∠NEM.

∵點M為DE的中點,

∴DM=EM.

在△ADM和△NEM中,

∴△ADM≌△NEM.

∴AM=MN.

∴M為AN的中點.

 

(2)證明:如圖2,

∵△BAD和△BCE均為等腰直角三角形,

∴AB=AD,CB=CE,∠CBE=∠CEB=45°.

∵AD∥NE,

∴∠DAE+∠NEA=180°.

∵∠DAE=90°,

∴∠NEA=90°.

∴∠NEC=135°.

∵A,B,E三點在同一直線上,

∴∠ABC=180°﹣∠CBE=135°.

∴∠ABC=∠NEC.

∵△ADM≌△NEM(已證),

∴AD=NE.

∵AD=AB,

∴AB=NE.

在△ABC和△NEC中,

∴△ABC≌△NEC.

∴AC=NC,∠ACB=∠NCE.

∴∠ACN=∠BCE=90°.

∴△ACN為等腰直角三角形.

 

(3)△ACN仍為等腰直角三角形.

證明:如圖3,此時A、B、N三點在同一條直線上.

∵AD∥EN,∠DAB=90°,

∴∠ENA=∠DAN=90°.

∵∠BCE=90°,

∴∠CBN+∠CEN=360°﹣90°﹣90°=180°.

∵A、B、N三點在同一條直線上,

∴∠ABC+∠CBN=180°.

∴∠ABC=∠NEC.

∵△ADM≌△NEM(已證),

∴AD=NE.

∵AD=AB,

∴AB=NE.

在△ABC和△NEC中,

∴△ABC≌△NEC.

∴AC=NC,∠ACB=∠NCE.

∴∠ACN=∠BCE=90°.

∴△ACN為等腰直角三角形.


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:


 已知二次函數(shù),則(      )         

A.其圖象的開口向上       B.其圖象的對稱軸為直線

C.其最大值為4            D.當x<-1時,yx的增大而減少

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


某校為了了解本校九年級學生的視力情況(視力情況分為:不近視,輕度近視,中度近視,重度近視),隨機對九年級的部分學生進行了抽樣調(diào)查,將調(diào)查結果進行整理后,繪制了如下不完整的統(tǒng)計圖,其中不近視與重度近視人數(shù)的和是中度近視人數(shù)的2倍.

請你根據(jù)以上信息解答下列問題:

(1)求本次調(diào)查的學生人數(shù);

(2)補全條形統(tǒng)計圖,在扇形統(tǒng)計圖中,“不近視”對應扇形的圓心角度數(shù)是 144 度;

(3)若該校九年級學生有1050人,請你估計該校九年級近視(包括輕度近視,中度近視,重度近視)的學生大約有多少人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,在平面直角坐標系xOy中,若菱形ABCD的頂點A,B的坐標分別為(﹣3,0),(2,0),點D在y軸上,則點C的坐標是  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖是兩個全等的含30°角的直角三角形.

(1)將其相等邊拼在一起,組成一個沒有重疊部分的平面圖形,請你畫出所有不同的拼接平面圖形的示意圖;

(2)若將(1)中平面圖形分別印制在質(zhì)地、形狀、大小完全相同的卡片上,洗勻后從中隨機抽取一張,求抽取的卡片上平面圖形為軸對稱圖形的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


某地統(tǒng)計局對2013年各縣市的固定資產(chǎn)投資情況進行了統(tǒng)計,并繪成了以下圖表,請根據(jù)相關信息解答下列問題:下列結論不正確的是(    )

A.2013年某市固定資產(chǎn)投資總額為200億元

B.2013年某市各單位固定資產(chǎn)投資額的中位數(shù)是16億元

C.2013年A縣固定資產(chǎn)投資額為占總額的30%

D.2013年固定資產(chǎn)投資扇形統(tǒng)計圖中表示A地的扇形的圓心角為110°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


寫出兩個平面圖形讓它既是軸對稱圖形,又是中心對稱圖形的是           

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,是由幾個相同的小正體搭成的幾何體的三視圖,則搭成這個幾何體的小正方體的個數(shù)是(  )

A.3個        B.4個       C.5個       D.6個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


 以下關于的說法,錯誤的是(     )

A.是無理數(shù)        B.  C.  D.

查看答案和解析>>

同步練習冊答案