【題目】如果代數(shù)式5a+3b的值為﹣4,那么代數(shù)式2(a+b)+4(2a+b)的值為

【答案】﹣8
【解析】解:∵5a+3b=﹣4,
∴原式=2a+2b+8a+4b=10a+6b=2(5a+3b)=2×(﹣4)=﹣8.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用代數(shù)式求值,掌握求代數(shù)式的值,一般是先將代數(shù)式化簡(jiǎn),然后再將字母的取值代入;求代數(shù)式的值,有時(shí)求不出其字母的值,需要利用技巧,“整體”代入即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AB=AC,BD=DC,AE平分∠FAB,問(wèn):AE與AD是否垂直?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一矩形長(zhǎng)20 cm,寬10 cm,另一與它相似的矩形的一邊長(zhǎng)為10 cm,求另一邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】水果批發(fā)市場(chǎng)有一種高檔水果,如果每千克盈利(毛利潤(rùn))10元,每天可售出500千克.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),在進(jìn)貨價(jià)不變的情況下,若每千克漲價(jià)1元,日銷(xiāo)量將減少20千克.
(Ⅰ)若以每千克能盈利18元的單價(jià)出售,問(wèn)每天的總毛利潤(rùn)為多少元?
(Ⅱ)現(xiàn)市場(chǎng)要保證每天總毛利潤(rùn)6000元,同時(shí)又要使顧客得到實(shí)惠,則每千克應(yīng)漲價(jià)多少元?
(Ⅲ)現(xiàn)需按毛利潤(rùn)的10%交納各種稅費(fèi),人工費(fèi)每日按銷(xiāo)售量每千克支出0.9元,水電房租費(fèi)每日102元,若剩下的每天總純利潤(rùn)要達(dá)到5100元,則每千克漲價(jià)應(yīng)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD 中,AB=3,BC=4,E,F(xiàn) 是對(duì)角線 AC上的兩個(gè)動(dòng)點(diǎn),分別從 A,C 同時(shí)出發(fā), 相向而行,速度均為 1cm/s,運(yùn)動(dòng)時(shí)間為 t 秒,當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)后就停止運(yùn)動(dòng).
(Ⅰ)若 G,H 分別是 AB,DC 中點(diǎn),求證:四邊形 EGFH 始終是平行四邊形.
(Ⅱ)在(1)條件下,當(dāng) t 為何值時(shí),四邊形 EGFH 為矩形.
(Ⅲ)若 G,H 分別是折線 A﹣B﹣C,C﹣D﹣A 上的動(dòng)點(diǎn),與 E,F(xiàn) 相同的速度同時(shí)出發(fā),當(dāng) t 為何值時(shí),四邊形 EGFH 為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知菱形ABCD中,對(duì)角線AC與BD交于點(diǎn)O,∠BAD=120°,AC=4,則該菱形的面積是(
A.16
B.16
C.8
D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】方程2x﹣1=3x+2的解為(
A.x=1
B.x=﹣1
C.x=3
D.x=﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若點(diǎn)P(m,1﹣2m)的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù),則點(diǎn)P一定在(
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在邊長(zhǎng)為1的小正方形網(wǎng)格中,ABC的頂點(diǎn)均在格點(diǎn)上,

1B點(diǎn)關(guān)于y軸的對(duì)稱(chēng)點(diǎn)坐標(biāo)為 ;

2)將ABC向右平移3個(gè)單位長(zhǎng)度得到A1B1C1,請(qǐng)畫(huà)出A1B1C1;

3)在(2)的條件下,A1的坐標(biāo)為 ;

4)求ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案