下面是小明課后作業(yè)中的一道題: 分解因式:a4-8a2+16。
解:a2-8a2+16=(a2-4)2=(a+2)2 (a-2)2=(a2+2a+4)(a2-2a+4)。你同意他的做法嗎?如果同意,請說出你的理由;如果不同意,請把你認(rèn)為正確的做法寫下來。
解:不同意,我的做法是:a4-8a2+16=(a2-4)2=(a+2)2 (a-2)2=(a2+4a+4)(a2-4a+4)。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年浙江杭州蕭山回瀾初中九年級12月階段性測試數(shù)學(xué)試卷(解析版) 題型:解答題

小明和同桌小聰在課后做作業(yè)時,對課本中的一道作業(yè)題,進(jìn)行了認(rèn)真探索.

【作業(yè)題】如圖1,一個半徑為100m的圓形人工湖如圖所示,弦AB是湖上的一座橋,測得圓周角∠C=45°,求橋AB的長.

小明和小聰經(jīng)過交流,得到了如下的兩種解決方法:

方法一:延長BO交⊙O與點(diǎn)E,連接AE,得 Rt△ABE,∠E=∠C,∴AB=

方法二:作AB的弦心距OH,連接OB, ∴∠BOH=∠C,解Rt△OHB, ∴HB=,∴AB=

感悟:圓內(nèi)接三角形的一邊和這邊的對銳角、圓的半徑(或直徑)這三者關(guān)系,可構(gòu)成直角三角形,從而把一邊和這邊的對銳角﹑半徑建立一個關(guān)系式.

(1)問題解決:受到(1)的啟發(fā),請你解下面命題:如圖2,點(diǎn)A(3,0)、B(0,),C為直線AB上一點(diǎn),過A、O、C的⊙E的半徑為2.求線段OC的長.

(2)問題拓展:如圖3,△ABC中,∠ ACB=75°,∠ABC=45°,AB=,D是線段BC上的一個動點(diǎn),以AD為直徑畫⊙O分別交AB,AC于E,F(xiàn),連結(jié)EF, 設(shè)⊙O半徑為x, EF為y.①y關(guān)于x的函數(shù)關(guān)系式;②求線段EF長度的最小值.

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

小明和同桌小聰在課后做作業(yè)時,對課本中的一道作業(yè)題,進(jìn)行了認(rèn)真探索。

【作業(yè)題】如圖1,一個半徑為100m的圓形人工湖如圖所示,弦AB是湖上的一座橋,測得圓周角∠C=45°,求橋AB的長。

小明和小聰經(jīng)過交流,得到了如下的兩種解決方法:

方法一:延長BO交⊙O與點(diǎn)E,連接AE,得 Rt△ABE,∠E=∠C,∴AB=100;

方法二:作AB的弦心距OH,連接OB, ∴∠BOH=∠C,解Rt△OHB, ∴HB=50

∴AB=100。

感悟:圓內(nèi)接三角形的一邊和這邊的對銳角、圓的半徑(或直徑)這三者關(guān)系,

可構(gòu)成直角三角形,從而把一邊和這邊的對銳角﹑半徑建立一個關(guān)系式。

(1)問題解決:受到(1)的啟發(fā),請你解下面命題:如圖2,點(diǎn)A(3,0)、B(0,),C為直線AB上一點(diǎn),過A、O、C的⊙E的半徑為2. 求線段OC的長。

(2)問題拓展:如圖3,△ABC中,∠ ACB=75°,∠ABC=45°,AB=2,D是線段BC上的一個動點(diǎn),以AD為直徑畫⊙O分別交AB,AC于E,F(xiàn),連結(jié)EF, 設(shè)⊙O半徑為x, EF為y.

①     y關(guān)于x的函數(shù)關(guān)系式;②求線段EF長度的最小值。

查看答案和解析>>

同步練習(xí)冊答案