【題目】某廠家新開發(fā)的一種電動(dòng)車如圖,它的大燈A射出的光線AB,AC與地面MN所夾的銳角分別為8°和10°,大燈A與地面離地面的距離為1m求該車大燈照亮地面的寬度BC.(不考慮其它因素)(參數(shù)數(shù)據(jù):sin8°=,tan8°=,sin10°=,tan10°=

【答案】該車大燈照亮地面的寬度BC是1.4m.

【解析】

試題分析:通過構(gòu)造直角三角形來解答,過A作AD⊥MN于D,就有了∠ABN、∠ACN的度數(shù),又已知AE的長(zhǎng),可在直角三角形ABE、ACE中分別求出BE、CE的長(zhǎng),BC就能求出.

試題解析:如圖,

過A作AD⊥MN于點(diǎn)D,

在Rt△ACD中,tan∠ACD=,CD=5.6(m),

在Rt△ABD中,tan∠ABD=,BD=7(m),

則BC=7-5.6=1.4(m).

答:該車大燈照亮地面的寬度BC是1.4m.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)活動(dòng)課上,張老師說:是無理數(shù),無理數(shù)就是無限不循環(huán)小數(shù),同學(xué)們,你能把的小數(shù)部分全部寫出來嗎?大家議論紛紛,晶晶同學(xué)說:要把它的小數(shù)部分全部寫出來是非常難的,但我們可以用(﹣1)表示它的小數(shù)部分.接著,張老師出示了一道練習(xí)題:

已知8+=x+y,其中x是一個(gè)整數(shù),且0<y<1,請(qǐng)你求出2x+(﹣y)2016的值.請(qǐng)聰明的你給出正確答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是 ( )

A. a3+ a22 a5 B. (-2 a3)24 a6 C. (a+b)2a2+b2 D. a6÷a2a3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(3分)若( )﹣(﹣2)=3,則括號(hào)內(nèi)的數(shù)是(

A﹣1 B1 C5 D﹣5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:AB是⊙O的直徑,點(diǎn)P在線段AB的延長(zhǎng)線上,BP=OB=2,點(diǎn)Q在⊙O上,連接PQ

(1)如圖①,線段PQ所在的直線與⊙O相切,求線段PQ的長(zhǎng);

(2)如圖②,線段PQ與⊙O還有一個(gè)公共點(diǎn)C,且PC=CQ,連接OQ,AC交于點(diǎn)D.

①判斷OQAC的位置關(guān)系,并說明理由;

②求線段PQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)問題情境:如圖1,在正方形ABCD中,E、F、G、H分別為AB,BC,CD,DA邊上的動(dòng)點(diǎn),連接EG,HF相交于點(diǎn)O,且∠HOE=∠ADC.試探究:EG與FH的數(shù)量關(guān)系,并說明理由.

(2)拓展延伸:如圖2,在菱形ABCD中,E、F、G、H分別為AB,BC,CD,DA邊上的動(dòng)點(diǎn),連接EG,HF相交于點(diǎn)O,且∠HOE=∠ADC,試探究:(1)中EG與FH的數(shù)量關(guān)系還成立嗎?并說明理由.

(3)反思提升:若將(2)中的菱形ABCD改為平行四邊形ABCD(如圖3),AB=a,AD=b,其他條件不變,則的猜想正確嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)x1,x2是一元二次方程x2﹣2x﹣3=0的兩根,則x12+x22=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a是最小的正整數(shù),ba的相反數(shù),c的絕對(duì)值為3,則abc的值為(  )

A. 3 B. -3 C. 3或-3 D. 0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若等腰三角形的兩條邊的長(zhǎng)分別為5cm和8cm,則它的周長(zhǎng)是( 。

A. 13cm B. 18cm C. 21cm D. 18cm或21cm

查看答案和解析>>

同步練習(xí)冊(cè)答案