【題目】“校園安全”受到全社會的廣泛關注,我市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了如圖兩幅尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學生共有 人,扇形統(tǒng)計圖中“了解”部分所對應扇形的圓心角為 °;
(2)若該中學共有學生900人,請根據(jù)上述調(diào)查結果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數(shù)為 人;
(3)若從對校園安全知識達到“了解”程度的3個女生A、B、C和2個男生M、N中分別隨機抽取1人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到女生A的概率.
【答案】(1)60,30;;(2)300;(3)
【解析】
(1)由了解很少的有30人,占50%,可求得接受問卷調(diào)查的學生數(shù),繼而求得扇形統(tǒng)計圖中“了解”部分所對應扇形的圓心角;
(2)利用樣本估計總體的方法,即可求得答案;
(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與恰好抽到女生A的情況,再利用概率公式求解即可求得答案.
解:(1)∵了解很少的有30人,占50%,
∴接受問卷調(diào)查的學生共有:30÷50%=60(人);
∵了解部分的人數(shù)為60﹣(15+30+10)=5,
∴扇形統(tǒng)計圖中“了解”部分所對應扇形的圓心角為:×360°=30°;
故答案為:60,30;
(2)根據(jù)題意得:900×=300(人),
則估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數(shù)為300人,
故答案為:300;
(3)畫樹狀圖如下:
所有等可能的情況有6種,其中抽到女生A的情況有2種,
所以P(抽到女生A)==.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O是等邊△ABC內(nèi)一點,OA=3,OB=4,OC=5,將線段BO以點B為旋轉中心逆時針旋轉60°得到線段BO′,下列結論:
①△BO′A可以由△BOC繞點B逆時針旋轉60°得到;&
②點O與O′的距離為4;
③∠AOB=150°;
④四邊形AOBO′的面積為6+3 ;
⑤S△AOC+S△AOB=6+.
其中正確的結論是_______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AC,BD相交于點O,AC=6,BD=8,∠AOD=65°,點E在BO上,AF∥CE交BD于點F.
(1)求證:四邊形AFCE是平行四邊形.
(2)當點E在邊BO上移動時,平行四邊形AFCE能否為矩形?若能,此時BE的長為多少(直接寫出結果)?若不能,請說明理由.
(3)當點E在邊BO上移動時,平行四邊形AFCE能否為菱形?若能,此時BE的長為多少(直接寫出結果)?若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在⊙O中,AB為直徑,C為⊙O上一點.
(1)如圖1,過點C作⊙O的切線,與AB的延長線相交于點P,若∠CAB=27°,求∠P的大。
(2)如圖2,D為上一點,且OD經(jīng)過AC的中點E,連接DC并延長,與AB的延長線相交于點P,若∠CAB=10°,求∠P的大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,正方形ABCD的頂點D在y軸上,A(﹣3,0),B(1,b),則正方形ABCD的面積為( )
A.34B.25C.20D.16
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:關于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.
(1)求二次函數(shù)的表達式;
(2)在y軸上是否存在一點P,使△PBC為等腰三角形.若存在,請求出點P的坐標;
(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M到 達點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)在等腰三角形ABC,∠A=130°,求∠B的度數(shù)
(2)在等腰三角形ABC中,∠A=40°,求∠B的度數(shù).
(3)根據(jù)(1)(2)問后發(fā)現(xiàn),∠A的度數(shù)不同,得到∠B的度數(shù)的個數(shù)也可能不同,如果在等腰三角形ABC中,設∠A=x°,當∠B有三個不同的度數(shù)時,請你探索x的取值范圍,并用含x的式子表示∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線 (a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示,下列結論:
①4ac<b2;
②方程 的兩個根是x1=﹣1,x2=3;
③3a+c>0
④當y>0時,x的取值范圍是﹣1≤x<3
⑤當x<0時,y隨x增大而增大
其中結論正確的個數(shù)是( 。
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 如圖,先將正方形紙片對折,折痕為MN,再把點B折疊在折痕MN上,折痕為AE,點E在CB上,點B在MN上的對應點為H,連接DH,則下列選項錯誤的是( 。
A.△ADH是等邊三角形B.NE=BC
C.∠BAE=15°D.∠MAH+∠NEH=90°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com