【題目】已知關(guān)于x的一元二次方程ax2+x+2=0.
(1)求證:當(dāng)a<0時(shí),方程ax2+x+2=0一定有兩個(gè)不等的實(shí)數(shù)根;
(2)若代數(shù)式﹣x2+x+2的值為正整數(shù),且x為整數(shù)時(shí),求x的值;
(3)當(dāng)a=a1時(shí),拋物線y=ax2+x+2與x軸的正半軸相交于點(diǎn)M(m,0);當(dāng)a=a2時(shí),拋物線y=ax2+x+2與x軸的正半軸相交于點(diǎn)N(n,0);若點(diǎn)M在點(diǎn)N的左邊,試比較a1與a2的大。
【答案】(1)見(jiàn)解析;(2)x的值是0或1;(3)a1<a2.
【解析】
(1)求出b2﹣4ac的值,根據(jù)正負(fù)即可判斷;
(2)求出原式=﹣(x2﹣x﹣2)的范圍確定其整數(shù)為1或2,算出﹣x2+x+2=1和﹣x2+x+2=2的解即可;
(3)把a=a1,a=a1代入求出其值,求出a1﹣a2的值即可.
(1)△=1﹣8a.
∵a<0,∴﹣8a>0即:△>0,∴方程ax2+x+2=0一定有兩個(gè)不等的實(shí)數(shù)根.
(2)原式=﹣(x2﹣x﹣2)=
∵不論x為何值,﹣(x)2≤0,∴原式=﹣(x)2.
∵代數(shù)式﹣x2+x+2的值為正整數(shù),∴代數(shù)式﹣x2+x+2的值為1或2.
①當(dāng)﹣x2+x+2=1時(shí),這時(shí)x的值不是整數(shù),不符合題意,舍去;
②當(dāng)﹣x2+x+2=2時(shí),解得:x=0或1.
答:x的值是0或1.
(3)∵當(dāng)a=a1時(shí),拋物線y=ax2+x+2與x軸的正半軸相交于點(diǎn)M(m,0),∴0=a1m2+m+2①.
∵當(dāng)a=a2時(shí),拋物線y=ax2+x+2與x軸的正半軸相交于點(diǎn)N(n,0),∴0=a2n2+n+2②,∴,∴.
∵點(diǎn)M在點(diǎn)N的左邊,且M、N均在x軸正半軸,∴m>0,n>0,m<n,∴mn+2m+2n>0,m﹣n<0,m2n2>0,∴a1﹣a2,∴a1<a2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,坐標(biāo)原點(diǎn)為O,A點(diǎn)坐標(biāo)為(4,0),B點(diǎn)坐標(biāo)為(﹣1,0),以AB的中點(diǎn)P為圓心,AB為直徑作⊙P的正半軸交于點(diǎn)C.
(1)求經(jīng)過(guò)A、B、C三點(diǎn)的拋物線所對(duì)應(yīng)的函數(shù)解析式;
(2)設(shè)M為(1)中拋物線的頂點(diǎn),求直線MC對(duì)應(yīng)的函數(shù)解析式;
(3)試說(shuō)明直線MC與⊙P的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l1:y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),已知A點(diǎn)的縱坐標(biāo)是2:
(1)求反比例函數(shù)的表達(dá)式;
(2)將直線l1:y=﹣x向上平移后的直線l2與反比例函數(shù)y=在第二象限內(nèi)交于點(diǎn)C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)課上學(xué)習(xí)了圓周角的概念和性質(zhì):“頂點(diǎn)在圓上,兩邊與圓相交”,“同弧所對(duì)的圓周角相等”,小明在課后繼續(xù)對(duì)圓外角和圓內(nèi)角進(jìn)行了探究.
下面是他的探究過(guò)程,請(qǐng)補(bǔ)充完整:
定義概念:頂點(diǎn)在圓外,兩邊與圓相交的角叫做圓外角,頂點(diǎn)在圓內(nèi),兩邊與圓相交的角叫做圓內(nèi)角.如圖1,∠M為所對(duì)的一個(gè)圓外角.
(1)請(qǐng)?jiān)趫D2中畫(huà)出所對(duì)的一個(gè)圓內(nèi)角;
提出猜想
(2)通過(guò)多次畫(huà)圖、測(cè)量,獲得了兩個(gè)猜想:一條弧所對(duì)的圓外角______這條弧所對(duì)的圓周角;一條弧所對(duì)的圓內(nèi)角______這條弧所對(duì)的圓周角;(填“大于”、“等于”或“小于”)
推理證明:
(3)利用圖1或圖2,在以上兩個(gè)猜想中任選一個(gè)進(jìn)行證明;
問(wèn)題解決
經(jīng)過(guò)證明后,上述兩個(gè)猜想都是正確的,繼續(xù)探究發(fā)現(xiàn),還可以解決下面的問(wèn)題.
(4)如圖3,F,H是∠CDE的邊DC上兩點(diǎn),在邊DE上找一點(diǎn)P使得∠FPH最大.請(qǐng)簡(jiǎn)述如何確定點(diǎn)P的位置.(寫(xiě)出思路即可,不要求寫(xiě)出作法和畫(huà)圖)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O.
(1)如圖1,E,G分別是OB,OC上的點(diǎn),CE與DG的延長(zhǎng)線相交于點(diǎn)F.若DF⊥CE,求證:OE=OG;
(2)如圖2,H是BC上的點(diǎn),過(guò)點(diǎn)H作EH⊥BC,交線段OB于點(diǎn)E,連結(jié)DH交CE于點(diǎn)F,交OC于點(diǎn)G.若OE=OG,
①求證:∠ODG=∠OCE;
②當(dāng)AB=1時(shí),求HC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某縣教育局為了豐富初中學(xué)生的大課間活動(dòng),要求各學(xué)校開(kāi)展形式多樣的陽(yáng)光體育活動(dòng).某中學(xué)就“學(xué)生體育活動(dòng)興趣愛(ài)好”的問(wèn)題,隨機(jī)調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖:
(1)在這次調(diào)查中,喜歡籃球項(xiàng)目的同學(xué)有 人,在扇形統(tǒng)計(jì)圖中,“乒乓球”的百分比為 %,如果學(xué)校有800名學(xué)生,估計(jì)全校學(xué)生中有 人喜歡籃球項(xiàng)目.
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)在被調(diào)查的學(xué)生中,喜歡籃球的有2名女同學(xué),其余為男同學(xué).現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表班級(jí)參加;@球隊(duì),請(qǐng)直接寫(xiě)出所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.
求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖 1,在△ABC 中,∠ACB=90°,BC=AC,點(diǎn) D 在 AB 上,DE⊥AB交 BC 于 E,點(diǎn) F 是 AE 的中點(diǎn)
(1) 寫(xiě)出線段 FD 與線段 FC 的關(guān)系并證明;
(2) 如圖 2,將△BDE 繞點(diǎn) B 逆時(shí)針旋轉(zhuǎn)α(0°<α<90°),其它條件不變,線段 FD 與線段 FC 的關(guān)系是否變化,寫(xiě)出你的結(jié)論并證明;
(3) 將△BDE 繞點(diǎn) B 逆時(shí)針旋轉(zhuǎn)一周,如果 BC=4,BE=2,直接寫(xiě)出線段 BF 的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形中,點(diǎn)是上一動(dòng)點(diǎn)(不與,重合),對(duì)角線、相交于點(diǎn),過(guò)點(diǎn)分別作、的垂線,分別交、于點(diǎn)、,交、于點(diǎn)、.下列結(jié)論:①;②;③;④;⑤當(dāng)時(shí),點(diǎn)是的中點(diǎn).
其中正確的結(jié)論有_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com