【題目】閱讀理解:
我們知道:一條線段有兩個端點,線段和線段表示同一條線段. 若在直線上取了三個不同的點,則以它們?yōu)槎它c的線段共有 條;若取了四個不同的點,則共有線段 條;…;依此類推,取了個不同的點,共有線段條.(用含的代數(shù)式表示)
類比探究:
以一個銳角的頂點為端點向這個角的內(nèi)部引射線.
(1)若引出兩條射線,則所得圖形中共有 個銳角;
(2)若引出條射線,則所得圖形中共有 個銳角.(用含的代數(shù)式表示)
拓展應(yīng)用:
一條鐵路上共有8個火車站,若一列火車往返過程中必須?棵總車站,則鐵路局需為這條線路準備多少種車票?
【答案】; (1)6; (2) ; 拓展應(yīng)用: 鐵路局需為這條線路準備56種車票.
【解析】
對于“閱讀理解”,假如l上取三點A,B,C,則線段有AB,AC,BC,自己試著總結(jié)出規(guī)律,再根據(jù)線段的定義解答;
類比探究:根據(jù)角的定義解答;
拓展應(yīng)用:先計算出線段的條數(shù),再根據(jù)兩站之間需要兩種車票解答.
解答:
閱讀理三個不同的點,以它們?yōu)槎它c的線段共有3條,
若取了四個不同的點,則共有線段6條,…,
依此類推,取了n個不同的點,共有線段n(n1)2條;
類比探究:
(1)引出兩條射線,共有4條射線,銳角的個數(shù)為6;
(2)引出n條射線,共有n+2條射線,銳角的個數(shù): ;
拓展應(yīng)用:8個火車站共有線段條數(shù) =28,
需要車票的種數(shù):28×2=56.
故答案為:3,6, ;6; ;56.
科目:初中數(shù)學 來源: 題型:
【題目】有一個面積為1的正方形,經(jīng)過一次“生長”后,在它的左右肩上生出兩個小正方形(如圖1),其中,三個正方形圍成的三角形是直角三角形,再經(jīng)過一次“生長”后,生出了4個正方形(如圖2),如果按此規(guī)律繼續(xù)“生長”下去,它將變得“枝繁葉茂”.在“生長”了2 017次后形成的圖形中所有正方形的面積和是____ .
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個自然數(shù)的立方,可以分裂成若干個連續(xù)奇數(shù)的和,例如:23,33和43分別可以按如圖所示的方式“分裂”,則63“分裂”出的奇數(shù)中,最大的奇數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,頂點為A( ,1)的拋物線經(jīng)過坐標原點O,與x軸交于點B.
(1)求拋物線對應(yīng)的二次函數(shù)的表達式;
(2)過B作OA的平行線交y軸于點C,交拋物線于點D,求證:△OCD≌△OAB;
(3)在x軸上找一點P,使得△PCD的周長最小,求出P點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線CD與EF相交于點O,∠COE=60°,將一直角三角尺AOB的直角頂點與O重合,OA平分∠COE.
(1)求∠BOD的度數(shù);
(2)將三角尺AOB以每秒3°的速度繞點O順時針旋轉(zhuǎn),同時直線EF也以每秒9°的速度繞點O順時針旋轉(zhuǎn),設(shè)運動時間為t秒(0≤t≤40).
①當t為何值時,直線EF平分∠AOB;
②若直線EF平分∠BOD,直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小明想測山高度,他在B處仰望山頂A,測得仰角∠B=31°,再往山的方向(水平方向)前進80m至索道口C處,沿索道方向仰望山頂,測得仰角∠ACE=39°.求這座山的高度(小明的身高忽略不計).
【參考數(shù)據(jù):tan31°≈ ,sin31°≈ ,tan39°≈ ,sin39°≈ 】
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:有一組對角相等而另一組對角不相等的凸四邊形叫做“等對角四邊形”.
(1)已知:如圖1,四邊形ABCD是“等對角四邊形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度數(shù).
(2)在探究“等對角四邊形”性質(zhì)時:張同學畫了一個“等對角四邊形”ABCD(如圖2),其中∠ABC=∠ADC,AB=AD,此時她發(fā)現(xiàn)CB=CD成立.請你證明此結(jié)論;
(3)已知:在“等對角四邊形”ABCD中,∠DAB=45°,∠ABC=90°,AB=5,AD=4 .則對角線AC的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】列方程解應(yīng)用題:五蓮縣新瑪特購物中心第一次用5000元購進甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的倍多15件,甲、乙兩種商品的進價和售價如下表(注:獲利=售價﹣進價)
甲 | 乙 | |
進價(元/件) | 20 | 30 |
售價(元/件) | 29 | 40 |
(1)新瑪特購物中心將第一次購進的甲、乙兩種商品全部賣完后一共可獲得多少利潤?
(2)該購物中心第二次以第一次的進價又購進甲、乙兩種商品,其中甲種商品的件數(shù)不變,乙種商品的件數(shù)是第一次的3倍;甲商品按原價銷售,乙商品打折銷售,第二次兩種商品都銷售完以后獲得總利潤比第一次獲得的總利潤多160元,求第二次乙種商品是按原價打幾折銷售?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】()如圖①,在四邊形中,,,、分別是邊、上的點,且.
求證:.
()如圖②,在四邊形中,,,、分別是邊、上的點,且,()中的結(jié)論是否仍然成立?
()如圖③,在四邊形中,,,、分別是邊、延長線上的點,且.()中的結(jié)論是否仍然成立?若成立,請證明;若不成立,請寫出它們之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com