【題目】計(jì)算下列各題:
(1)2(m+1)2﹣(2m+1)(2m﹣1);
(2)4x2﹣(﹣2x+3)(﹣2x﹣3);
(3)先化簡(jiǎn),再求值:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x,其中x=﹣2,y=

【答案】
(1)解:原式=2(m2+2m+1)﹣(4m2﹣1)

=2m2+4m+2﹣4m2+1

=﹣2m2+4m+3;


(2)解:原式=4x2﹣(4x2﹣9)

=4x2﹣4x2+9

=9;


(3)解:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x

=[x2+4xy+4y2﹣3x2+xy﹣3xy+y2﹣5y2]÷2x

=[﹣2x2+2xy]÷2x

=﹣x+y,

當(dāng)x=﹣2,y= 時(shí),原式=﹣(﹣2)+ =2


【解析】(1)先根據(jù)完全平方公式和平方差公式算乘法,再合并同類項(xiàng)即可;(2)先算平方差公式化簡(jiǎn),再合并同類項(xiàng)即可;(3)先算乘法,再合并同類項(xiàng),算除法,最后代入求出即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上距離原點(diǎn)上的距離是2個(gè)單位長(zhǎng)度的點(diǎn)表示的數(shù)是( )
A.2
B.2或2
C.2
D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若2(a+3)的值與2互為相反數(shù),則a的值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上與原點(diǎn)之間的距離小于5的表示整數(shù)的點(diǎn)共有 個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC是等邊三角形,點(diǎn)D、E分別在邊AB、BC上,CD、AE交于點(diǎn)F,∠AFD=60°.
(1)如圖1,求證:BD=CE;
(2)如圖2,F(xiàn)G為△AFC的角平分線,點(diǎn)H在FG的延長(zhǎng)線上,HG=CD,連接HA、HC,求證:∠AHC=60°;
(3)在(2)的條件下,若AD=2BD,F(xiàn)H=9,求AF長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線與直線AB相交于A(﹣3,0),B(0,3)兩點(diǎn).

(1)求這條拋物線的解析式;

(2)設(shè)C是拋物線對(duì)稱軸上的一動(dòng)點(diǎn),求使∠CBA=90°的點(diǎn)C的坐標(biāo);

(3)探究在拋物線上是否存在點(diǎn)P,使得△APB的面積等于3?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,直線與x軸、y軸的交點(diǎn)分別為A、B,將OBA對(duì)折,使點(diǎn)O的對(duì)應(yīng)點(diǎn)H落在直線AB上,折痕交x軸于點(diǎn)C.

(1)直接寫出點(diǎn)C的坐標(biāo),并求過A、B、C三點(diǎn)的拋物線的解析式;

(2)若拋物線的頂點(diǎn)為D,在直線BC上是否存在點(diǎn)P,使得四邊形ODAP為平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由;

(3)設(shè)拋物線的對(duì)稱軸與直線BC的交點(diǎn)為T,Q為線段BT上一點(diǎn),直接寫出|QA﹣QO|的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一組數(shù)據(jù):2,1,x,7,35,32的眾數(shù)是2,則這組數(shù)據(jù)的中位數(shù)是( )

A. 2 B. 2.5 C. 3 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知長(zhǎng)為a,寬為b(a>b)的長(zhǎng)方形的周長(zhǎng)為14,面積為10,則ab(a+b)的值為(

A. 40 B. 50 C. 60 D. 70

查看答案和解析>>

同步練習(xí)冊(cè)答案