【題目】多項(xiàng)式﹣a2﹣1與3a2﹣2a+1的和為(
A.2a2﹣2a
B.4a2﹣2a+2
C.4a2﹣2a﹣2
D.2a2+2a

【答案】A
【解析】解:根據(jù)題意得:(﹣a2﹣1)+(3a2﹣2a+1)=﹣a2﹣1+3a2﹣2a+1=2a2﹣2a, 故選A.
【考點(diǎn)精析】本題主要考查了整式加減法則的相關(guān)知識(shí)點(diǎn),需要掌握整式的運(yùn)算法則:(1)去括號(hào);(2)合并同類(lèi)項(xiàng)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一個(gè)三角形兩邊長(zhǎng)分別是3、7,則第三邊長(zhǎng)可能是( )

A. 4 B. 8 C. 10 D. 11

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)角的補(bǔ)角比它的余角的3倍少20°,這個(gè)角的度數(shù)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】x2 =25,x=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)M3,﹣2),將它先向左平移2個(gè)單位,再向上平移4個(gè)單位后得到點(diǎn)N,則點(diǎn)N的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=x2bx+c與x軸交于點(diǎn)A(8,0)、B(2,0)兩點(diǎn),與y軸交于點(diǎn)C.

(1)如圖1,求拋物線的解析式;

(2)如圖2,點(diǎn)P為第四象限拋物線上一點(diǎn),連接PB并延長(zhǎng)交y軸于點(diǎn)D,若點(diǎn)P的橫坐標(biāo)為t,CD長(zhǎng)為d,求d與t的函數(shù)關(guān)系式(并求出自變量t的取值范圍);

(3)如圖3,在(2)的條件下,連接AC,過(guò)點(diǎn)P作PHx軸,垂足為點(diǎn)H,延長(zhǎng)PH交AC于點(diǎn)E,連接DE,射線DP關(guān)于DE對(duì)稱(chēng)的射線DG交AC于點(diǎn)G,延長(zhǎng)DG交拋物線于點(diǎn)F,當(dāng)點(diǎn)G為AC中點(diǎn)時(shí),求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)軸上有A,B,C三點(diǎn),分別代表﹣30,﹣10,10,兩只電子螞蟻甲,乙分別從A,C兩點(diǎn)同時(shí)相向而行,甲的速度為4個(gè)單位/秒,乙的速度為6個(gè)單位/秒.
(1)甲,乙在數(shù)軸上的哪個(gè)點(diǎn)相遇?
(2)多少秒后,甲到A,B,C的距離和為48個(gè)單位?
(3)在甲到A,B,C的距離和為48個(gè)單位時(shí),若甲調(diào)頭并保持速度不變,則甲,乙還能在數(shù)軸上相遇嗎?若能,求出相遇點(diǎn);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】化簡(jiǎn)(﹣2x+y)+3(x﹣2y)等于(
A.﹣5x+5y
B.﹣5x﹣y
C.x﹣5y
D.﹣x﹣y

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列計(jì)算正確的是( 。

A. a3a2a5B. a2+2a23a4C. a6÷a2a3D. a32a5

查看答案和解析>>

同步練習(xí)冊(cè)答案