如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點坐標(biāo)為(4,-),且與y軸交于點C(0,2),與x軸交于A,B兩點(點A在點B的左邊).
(1)求拋物線的解析式及A,B兩點的坐標(biāo);
(2)在(1)中拋物線的對稱軸l上是否存在一點P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,請說明理由;
(3)以AB為直徑的⊙M相切于點E,CE交x軸于點D,求直線CE的解析式.
【答案】分析:(1)利用頂點式求得二次函數(shù)的解析式后令其等于0后求得x的值即為與x軸交點坐標(biāo)的橫坐標(biāo);
(2)線段BC的長即為AP+CP的最小值;
(3)連接ME,根據(jù)CE是⊙M的切線得到ME⊥CE,∠CEM=90°,從而證得△COD≌△MED,設(shè)OD=x,在RT△COD中,利用勾股定理求得x的值即可求得點D的坐標(biāo),然后利用待定系數(shù)法確定線段CE的解析式即可.
解答:解:(1)由題意,設(shè)拋物線的解析式為y=a(x-4)2-(a≠0)
∵拋物線經(jīng)過(0,2)
∴a(0-4)2-=2
解得:a=
∴y=(x-4)2-
即:y=x2-x+2
當(dāng)y=0時,x2-x+2=0
解得:x=2或x=6
∴A(2,0),B(6,0);

(2)存在,
如圖2,由(1)知:拋物線的對稱軸l為x=4,
因為A、B兩點關(guān)于l對稱,連接CB交l于點P,則AP=BP,所以AP+CP=BC的值最小
∵B(6,0),C(0,2)
∴OB=6,OC=2
∴BC=2,
∴AP+CP=BC=2
∴AP+CP的最小值為2

(3)如圖3,連接ME
∵CE是⊙M的切線
∴ME⊥CE,∠CEM=90°
由題意,得OC=ME=2,∠ODC=∠MDE
∵在△COD與△MED中

∴△COD≌△MED(AAS),
∴OD=DE,DC=DM
設(shè)OD=x
則CD=DM=OM-OD=4-x
則RT△COD中,OD2+OC2=CD2,
∴x2+22=(4-x)2
∴x=
∴D(,0)
設(shè)直線CE的解析式為y=kx+b
∵直線CE過C(0,2),D(,0)兩點,

解得:
∴直線CE的解析式為y=-+2;
點評:本題考查了二次函數(shù)的綜合知識,特別是用頂點式求二次函數(shù)的解析式,更是中考中的?純(nèi)容,本題難度偏大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點,與y軸交于點精英家教網(wǎng)C(0,3).
(1)求拋物線的解析式;
(2)求直線BC的函數(shù)解析式;
(3)在拋物線上,是否存在一點P,使△PAB的面積等于△ABC的面積,若存在,求出點P的坐標(biāo),若不存在,請說明理由.
(4)點Q是直線BC上的一個動點,若△QOB為等腰三角形,請寫出此時點Q的坐標(biāo).(可直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(-1,0)精英家教網(wǎng)、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)在拋物線的對稱軸x=1上求一點M,使點M到點A的距離與到點C的距離之和最小,并求出此時點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•衡陽)如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點,對稱軸是x=-1.
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)動點Q從點O出發(fā),以每秒1個單位長度的速度在線段OA上運動,同時動點M從O點出發(fā)以每秒3個單位長度的速度在線段OB上運動,過點Q作x軸的垂線交線段AB于點N,交拋物線于點P,設(shè)運動的時間為t秒.
①當(dāng)t為何值時,四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)點P是拋物線對稱軸上一點,若△PAB∽△OBC,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c的頂點是(-1,-4),且與x軸交于A、B(1,0)兩點,交y軸于點C;
(1)求此拋物線的解析式;
(2)①當(dāng)x的取值范圍滿足條件
-2<x<0
-2<x<0
時,y<-3;
     ②若D(m,y1),E(2,y2)是拋物線上兩點,且y1>y2,求實數(shù)m的取值范圍;
(3)直線x=t平行于y軸,分別交線段AC于點M、交拋物線于點N,求線段MN的長度的最大值;
(4)若以拋物線上的點P為圓心作圓與x軸相切時,正好也與y軸相切,求點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案