如圖,在△ABC中,AB=AC,且D為BC上一點,CD=AD,AB=BD,則∠B的度數(shù)為(  )
 
A.30° B.36° C.40° D.45°
B

試題分析:本題主要考查等腰三角形的性質(zhì),解題的關(guān)鍵是運用等腰三角形的性質(zhì).  ∵∠BAD=2∠CAD=2∠B=2∠C  ∵AB=AC,∴∠B=∠C
∵AB=BD,∴∠BAD=∠BDA,∵CD=AD,∴∠C=∠CAD,
∵∠BAD+∠CAD+∠B+∠C=180°,∴5∠B=180°,
∴∠B=36°故選:B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀下面材料:
小明遇到這樣一個問題: 如圖1,五個正方形的邊長都為1,將這五個正方形分割為四部分,再拼接為一個大正方形.
小明研究發(fā)現(xiàn):如圖2,拼接的大正方形的邊長為, “日”字形的對角線長都為,五個正方形被兩條互相垂直的線段AB,CD分割為四部分,將這四部分圖形分別標(biāo)號,以CD為一邊畫大正方形,把這四部分圖形分別移入正方形內(nèi),就解決問題.
請你參考小明的畫法,完成下列問題:
(1)如圖3,邊長分別為a,b的兩個正方形被兩條互相垂直的線段AB,CD分割為四部分圖形,現(xiàn)將這四部分圖形拼接成一個大正方形,請畫出拼接示意圖
(2)如圖4,一個八角形紙板有個個角都是直角,所有的邊都相等,將這個紙板沿虛線分割為八部分,再拼接成一個正方形,如圖5所示,畫出拼接示意圖;若拼接后的正方形的面積為,則八角形紙板的邊長為         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在□ABCD中,BC=2AB=4,點E、F分別是BC、AD的中點.
(1)求證:△ABF≌△CDF;
(2)當(dāng)四邊形AECF為菱形時,求□ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

類比梯形的定義,我們定義:有一組對角相等而另一組對角不相等的凸四邊形叫做“等對角四邊形”.
(1)已知:如圖1,四邊形ABCD是“等對角四邊形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度數(shù).
(2)在探究“等對角四邊形”性質(zhì)時:
①小紅畫了一個“等對角四邊形”ABCD(如圖2),其中∠ABC=∠ADC,AB=AD,此時她發(fā)現(xiàn)CB=CD成立.請你證明此結(jié)論;
②由此小紅猜想:“對于任意‘等對角四邊形’,當(dāng)一組鄰邊相等時,另一組鄰邊也相等”.你認(rèn)為她的猜想正確嗎?若正確,請證明;若不正確,請舉出反例.
(3)已知:在“等對角四邊形"ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求對角線AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形AEFG的頂點E、G在正方形ABCD的邊AB、AD上,連接BF、DF.
(1)求證:BF=DF;
(2)連接CF,請直接寫出BE∶CF的值(不必寫出計算過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知⊙O的直徑AB與弦CD互相垂直,垂足為點E.⊙O的切線BF與弦AC的延長線相交于點 F,且AC=8,tan∠BDC=
 
(1)求⊙O的半徑長;
(2)求線段CF長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知矩形ABCD的周長為20cm,兩條對角線AC,BD相交于點O,過點O作AC的垂線EF,分別交兩邊AD,BC于E,F(xiàn)(不與頂點重合),則以下關(guān)于△CDE與△ABF判斷完全正確的一項為(  )
A.△CDE與△ABF的周長都等于10cm,但面積不一定相等
B.△CDE與△ABF全等,且周長都為10cm
C.△CDE與△ABF全等,且周長都為5cm
D.△CDE與△ABF全等,但它們的周長和面積都不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,△ABC中,DE是AC的垂直平分線,AE=4cm,△ABD的周長為14cm,則△ABC的周長為( )
A.18 cmB.22 cmC.24 cmD.26 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,長方形ABCD(長方形的對邊相等,每個角都是90°),AB=6cm,AD=2cm,動點P、Q分別從點A、C同時出發(fā),點P以2厘米/ 秒的速度向終點B移動,點Q以1厘米/ 秒的速度向D移動,當(dāng)有一點到達(dá)終點時,另一點也停止運動。設(shè)運動的時間為t ,問:
(1)當(dāng)t=1秒時,四邊形BCQP面積是多少?
(2)當(dāng)t為何值時,點P和點Q距離是3cm?
(3)當(dāng)t=     時, 以點P、Q、D為頂點的三角形是等腰三角形.(直接寫出答案)

查看答案和解析>>

同步練習(xí)冊答案