在直角坐標系xOy中,反比例函數(shù)y=
kx
的圖象經(jīng)過點(1,8),點A(4,m)在這反比例函數(shù)圖象上.
(1)求反比例函數(shù)的解析式和m的值;
(2)如果一次函數(shù)y=ax+b的圖象經(jīng)過點A,與y軸交于點B,點A、B之間的距離為5,并且y隨x的增大而增大,求一次函數(shù)的解析式.
分析:(1)將點(1,8)代入即可得出反比例函數(shù)的解析式,再將(4,m)代入即可得出m的值;
(2)設(shè)點B(0,n),根據(jù)兩點之間的距離為5,得出n的值,由y隨x的增大而增大,得a>0,從而得出點B的坐標,求出一次函數(shù)的解析式.
解答:解:(1)∵反比例函數(shù)y=
k
x
的圖象經(jīng)過點(1,8),
∴8=
k
1

∴k=8,
∴y=
8
x

∵A(4,m)在y=
8
x
的圖象上,
∴m=2;

(2)設(shè)點B(0,n),∵A、B之間的距離為5,
(4-0)2+(n-2)2
=5,
∴n1=5,n2=-1,(驗之為根),
∴點B的坐標為(0,5)或(0,-1).
①當點B的坐標為(0,5)時,則
4a+b=2
b=5
,
a=-
3
4
b=5

∵y隨x的增大而增大,
∴a=-
3
4
舍去;
②當點B的坐標為(0,-5)時,則
4a+b=2
b=-1

a=
3
4
b=-1
,
∴圖象經(jīng)過點A(4,2)和B(0,-1)的一次函數(shù)的解析式為y=
3
4
x-1.
點評:本題考查了用待定系數(shù)法求反比例函數(shù)的解析式和一次函數(shù)的解析式,是基礎(chǔ)知識要熟練掌握.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

首先,我們看兩個問題的解答:
問題1:已知x>0,求x+
3
x
的最小值.
問題2:已知t>2,求
t2-5t+9
t-2
的最小值.
問題1解答:對于x>0,我們有:x+
3
x
=(
x
-
3
x
)2+2
3
2
3
.當
x
=
3
x
,即x=
3
時,上述不等式取等號,所以x+
3
x
的最小值2
3

問題2解答:令x=t-2,則t=x+2,于是
t2-5t+9
t-2
=
(x+2)2-5(x+2)+9
x
=
x2-x+3
x
=x+
3
x
-1

由問題1的解答知,x+
3
x
的最小值2
3
,所以
t2-5t+9
t-2
的最小值是2
3
-1

弄清上述問題及解答方法之后,解答下述問題:
在直角坐標系xOy中,一次函數(shù)y=kx+b(k>0,b>0)的圖象與x軸、y軸分別交于A、B兩點,且使得△OAB的面積值等于|OA|+|OB|+3.
(1)用b表示k;
(2)求△AOB面積的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角坐標系xOy中,正方形OCBA的頂點A,C分別在y軸,x軸上,點B坐標為(6,6),拋物線y=ax2+bx+c經(jīng)過點A,B兩點,且3a-b=-1.
(1)求a,b,c的值;
(2)如果動點E,F(xiàn)同時分別從點A,點B出發(fā),分別沿A→B,B→C運動,速度都是每秒1個單位長度,當點E到達終點B時,點E,F(xiàn)隨之停止運動,設(shè)運動時間為t秒,△EBF的面積為S.
①試求出S與t之間的函數(shù)關(guān)系式,并求出S的最大值;
②當S取得最大值時,在拋物線上是否存在點R,使得以E,B,R,F(xiàn)為頂點的四邊形是平行四邊形?如果存在,求出點R的坐標;如果不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)在直角坐標系xoy中,函數(shù)y=4x的圖象與反比例函數(shù)y=
kx
(k>0)的圖象有兩個公共點A、B(如圖),其中點A的縱坐標為4過點A作x軸的垂線,再過點B作y軸的垂線,兩垂線相交于點C.
(1)求點C的坐標;
(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•北京二模)已知:如圖,在直角坐標系xOy中,點A(8,0)、B(0,6),點C在x軸的負半軸上,AB=AC.動點M在x軸上從點C向點A移動,動點N在線段AB上從點A向點B移動,點M、N同時出發(fā),且移動的速度都為每秒1個單位,移動時間為t秒(0<t<10).
(1)設(shè)△AMN的面積為y,求y關(guān)于t的函數(shù)關(guān)系解析式;
(2)求四邊形MNBC的面積最小是多少?
(3)求時間t為何值時,△AMN是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•鞍山三模)如圖,在直角坐標系xOy中,A、B是x軸上的兩點,以AB為直徑的圓交y軸于C,設(shè)過A、B、C三點的拋物線的解析式為y=x2-mx+n.方程x2-mx+n=0的兩根倒數(shù)和為-4.
(1)求n的值;
(2)求此拋物線的解析式;
(3)設(shè)平行于x軸的直線交此拋物線于E、F兩點,問是否存在此線段EF為直徑的圓恰好與x軸相切?若存在,求出此圓的半徑;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案