【題目】省射擊隊為從甲、乙兩名運動員中選拔一人參加全國比賽,對他們進行了六次測試,測試成績如下表(單位:環(huán)):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 |
乙 | 8 | 7 | 10 | 10 | 9 | 8 |
(1)根據表格中的數據,計算出甲的平均成績是 環(huán),乙的平均成績是 環(huán);
(2)分別計算甲、乙六次測試成績的方差;
(3)根據(1),(2)計算的結果,你認為推薦誰參加全國比賽更合適,請說明理由.
【答案】(1)9,9;(2),;(3)甲,理由見解析
【解析】
(1)根據圖表中的數據,分別求出甲乙的平均數即可;(2)根據平均數,以及方差公式求出甲乙的方差即可;(3)兩人的平均成績相等,說明實力相當,再從穩(wěn)定性分析得出即可.
(1)甲:(10+8+9+8+10+9)÷6=9(環(huán)),
乙:(8+7+10+10+9+8)÷6≈8.7(環(huán));
(2)s2甲= [(109)2+(89)2+(99)2+(89)2+(109)2+(99)2
= (1+1+0+1+1+0)
= ;
s2乙= [(88.7)2+(78.7)2+(108.7)2+(108.7)2+(98.7)2+(88.7)2]
= (0.49+2.89+1.69+1.69+0.09+0.49)
= 1.2;
(3)推薦甲參加全國比賽更合適,理由如下:從平均數分析,兩人的平均成績甲>乙,說明甲的實力較強;從方差分析,甲的六次測試成績的方差比乙小,說明甲發(fā)揮較為穩(wěn)定.故推薦甲參加比賽更合適.
科目:初中數學 來源: 題型:
【題目】如圖,在坐標平面內,點O是坐標原點,A(0,6),B(2,0),且∠OBA=60°,將△OAB沿直線AB翻折,得到△CAB,點O與點C對應.
(1)求點C的坐標:
(2)動點P從點O出發(fā),以2個單位長度/秒的速度沿線段OA向終點A運動,設△POB的面積為S(S≠0),點P的運動時間為t秒,求S與t的關系式,并直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如圖1擺放,點D為AB邊的中點,DE交AC于點P,DF經過點C,且BC=2.
(1)求證:△ADC∽△APD;
(2)求△APD的面積;
(3)如圖2,將△DEF繞點D順時針方向旋轉角α(0°<α<60°),此時的等腰直角三角尺記為△DE′F′,DE′交AC于點M,DF′交BC于點N,試判斷的值是否隨著α的變化而變化?如果不變,請求出的值;反之,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為參加學校藝術節(jié)閉幕演出,八年級一班欲租用男、女演出服裝若干套以供演出時使用,已知4套男裝和6套女裝租用一天共需租金490元,6套男裝和10套女裝租用一天共需790元.
(1)租用男裝、女裝一天的價格分別是多少?
(2)由于演出時間錯開租用高峰時段,男裝、女裝一天的租金分別給予9折和8折優(yōu)惠,若該班演出團由5名男生和12名女生組成,求在演出當天該班租用服裝實際支付的租金是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是“明清影視城”的一扇圓弧形門,小紅到影視城游玩,他了解到這扇門的相關數據:這扇圓弧形門所在的圓與水平地面是相切的,AB=CD=0.25米,BD=1.5米,且AB.CD與水平地面都是垂直的.根據以上數據,請你幫小紅計算出這扇圓弧形門的最高點離地面的距離是( )
A.2米 B.2.5米 C.2.4米 D.2.1米
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】兩塊等腰直角三角板△ABC和△DEC如圖擺放,其中∠ACB=∠DCE=90°,F是DE的中點,H是AE的中點,G是BD的中點.
(1)如圖1,若點D、E分別在AC、BC的延長線上,通過觀察和測量,猜想FH和FG的數量關系為______和位置關系為______;
(2)如圖2,若將三角板△DEC繞著點C順時針旋轉至ACE在一條直線上時,其余條件均不變,則(1)中的猜想是否還成立,若成立,請證明,不成立請說明理由;
(3)如圖3,將圖1中的△DEC繞點C順時針旋轉一個銳角,得到圖3,(1)中的猜想還成立嗎?直接寫出結論,不用證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:一個自然數,右邊的數字總比左邊的數字小,我們稱它為“下滑數”(如:32,641,8531等).現從兩位數中任取一個,恰好是“下滑數”的概率為( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com