【題目】如圖所示,EF,G,H分別是四邊形ABCD的邊ABBC,CDAD的中點

(1)當四邊形ABCD是矩形時,四邊形EFGH是_________請說明理由;

(2)當四邊形ABCD滿足什么條件時,四邊形EFGH為正方形?并說明理由

【答案】1)菱形,理由見解析;(2當四邊形ABCD滿足ACBDACBD時,四邊形EFGH為正方形.理由見解析.

【解析】1)利用三角形中位線定理三角形的中位線等于第三邊的一半,根據(jù)菱形的判定,矩形的性質,求解即可,

2)首先利用菱形的性質得出平行四邊形ABCD是菱形,再利用正方形的性質與判定得出即可.

解:(1)理由:∵四邊形ABCD是矩形,∴ACBD.

由題意,得EFAC,EHBDGHAC,GFBD,

EFEHGHGF.

∴四邊形EFGH是菱形.

(2)當四邊形ABCD滿足ACBDACBD時,四邊形EFGH為正方形.理由:

E,F分別是四邊形ABCD的邊AB,BC的中點,

EFAC,EFAC.

同理:EHBDEHBD,GFBD,GHAC.

又∵ACBD,EFEHGHGF.

∴四邊形EFGH是菱形.

ACBDEFEH.

∴四邊形EFGH是正方形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】有一面積為5 的等腰三角形,它的一個內角是30°,則以它的腰長為邊的正方形的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了豐富學生課外小組活動,培養(yǎng)學生動手操作能力,王老師讓學生把5m長的彩繩截成2m或1m的彩繩,用來做手工編織,在不造成浪費的前提下,你有幾種不同的截法(  )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級10個班師生舉行畢業(yè)文藝匯演,每班2個節(jié)目,有歌唱與舞蹈兩類節(jié)目,年級統(tǒng)計后發(fā)現(xiàn)歌唱類節(jié)目數(shù)比舞蹈類節(jié)目數(shù)的2倍少4個.

(1)九年級師生表演的歌唱與舞蹈類節(jié)目數(shù)各有多少個?

(2)該校七、八年級師生有小品節(jié)目參與,在歌唱、舞蹈、小品三類節(jié)目中,每個節(jié)目的演出平均用時分別是5分鐘、6分鐘、8分鐘,預計所有演出節(jié)目交接用時共花15分鐘.若從20:00開始,22:30之前演出結束,問參與的小品類節(jié)目最多能有多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】春種一粒粟,秋收萬顆子,唐代詩人李紳這句詩中的即谷子(去皮后則稱為小米),被譽為中華民族的哺育作物.我省有著小雜糧王國的美譽,谷子作為我省雜糧面積為2000萬畝,年總產(chǎn)量為150萬噸,我省谷子平均畝產(chǎn)量為160kg,國內其他地區(qū)谷子的平均畝產(chǎn)量為60kg請解答下列問題:

(1)求我省2016年谷子的種植面積是多少萬畝.

(2)2017年,若我省谷子的平均畝產(chǎn)量仍保持160kg不變,要使我省谷子的年總產(chǎn)量不低于52萬噸,那么,今年我省至少應再多種植多少萬畝的谷子?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】油電混動汽車是一種節(jié)油、環(huán)保的新技術汽車.它將行駛過程中部分原本被浪費的能量回收儲存于內置的蓄電池中.汽車在低速行駛時,使用蓄電池帶動電動機驅動汽車,節(jié)約燃油.某品牌油電混動汽車與普通汽車的相關成本數(shù)據(jù)估算如下:

油電混動汽車

普通汽車

購買價格

17.48

15.98

每百公里燃油成本(元)

31

46

某人計劃購入一輛上述品牌的汽車.他估算了未來10年的用車成本,在只考慮車價和燃油成本的情況下,發(fā)現(xiàn)選擇油電混動汽車的成本不高于選擇普通汽車的成本.則他在估算時,預計平均每年行駛的公里數(shù)至少為( 。

A. 5000 B. 10000 C. 15000 D. 20000

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰三角形ABC中,AB=AC,AHBC,點EAH上一點,延長AH至點F,使FH=EH.

(1)求證:四邊形EBFC是菱形;

(2)如果∠BAC=ECF,求證:ACCF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程:

(1) =0;

(2) -1.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,B=90°,點EAC的中點,AC=2AB,BAC的平分線ADBC于點D,作AFBC,連接DE并延長交AF于點F,連接FC.

求證:四邊形ADCF是菱形.

查看答案和解析>>

同步練習冊答案