【題目】已知拋物線y=a(x﹣1)(x﹣3)(a<0)的頂點(diǎn)為A,與y軸交于點(diǎn)C,過(guò)C作CB∥x軸交拋物線于點(diǎn)B,過(guò)點(diǎn)B作直線l⊥x軸,連結(jié)OA并延長(zhǎng),交l于點(diǎn)D,連結(jié)OB.
(1)當(dāng)a=﹣2時(shí),求線段OB的長(zhǎng).
(2)是否存在特定的a值,使得△OBD為等腰三角形?若存在,請(qǐng)寫(xiě)出計(jì)算過(guò)程并求出a的值;若不存在,請(qǐng)說(shuō)明理由.
(3)設(shè)△OBD的外心M的坐標(biāo)為(m,n),求m與n的數(shù)量關(guān)系式.
【答案】(1)2 (2)a=﹣1或- (3)m=3n2+2
【解析】
(1)把a=-2代入y=-2(x-1)(x-3)=-2x2+8x-6,解方程得到點(diǎn)C(0,-6),根據(jù)勾股定理即可得到結(jié)論;
(2)解方程得到C(0,3a),B(4,3a),過(guò)A作AE⊥x軸于點(diǎn)E,AE延長(zhǎng)線與CB交于點(diǎn)F,根據(jù)三角形的中位線的性質(zhì)得到DG=2AE=-2a,求得BD=DG+BG=-5a,當(dāng)△OBD為等腰三角形時(shí),①當(dāng)OB=BD=-5a,②當(dāng)OD=BD=-5a時(shí),③當(dāng)OD=OB時(shí),DG=BG,解方程即可得到結(jié)果;
(3)根據(jù)已知條件得到點(diǎn)M在BD的垂直平分線上,OM=MD,求得n=a,根據(jù)勾股定理列方程即可得到結(jié)論.
(1)當(dāng)a=﹣2時(shí),y=﹣2(x﹣1)(x﹣3)=﹣2x2+8x﹣6,
當(dāng)x=0時(shí),得y=﹣6,
∴點(diǎn)C(0,﹣6),
當(dāng)y=﹣6時(shí),即﹣6=﹣2x2+8x﹣6,
解得:x=0,或x=4,
∴點(diǎn)B(4,﹣6),
∴BC=4,OC=6,
∴OB═ =2 ;
(2)在y═a(x﹣1)(x﹣3)中,令x═0,得y═3a,
∴C(0,3a),B(4,3a),
∵點(diǎn)A是拋物線的頂點(diǎn),
∴A(2,-a),
過(guò)A作AE⊥x軸于點(diǎn)E,AE延長(zhǎng)線與CB交于點(diǎn)F,
將BD與x軸的交點(diǎn)記為點(diǎn)G,
則E為OG的中點(diǎn),
∵AE∥BD,
∴DG=2AE=﹣2a,
∴BD=DG+BG=﹣5a,
當(dāng)△OBD為等腰三角形時(shí),分類(lèi)討論:
①當(dāng)OB=BD=﹣5a,在Rt△OBC中,BC=﹣4a=4,
∴a=﹣1,
②當(dāng)OD=BD=﹣5a時(shí),在Rt△ODG中,25a2﹣4a2=16,
∴a=±;∵a<0
∴a=-
③當(dāng)OD=OB時(shí),DG=BG,但﹣2a≠﹣3a,
∴此種情況不可能;
∴a=﹣1或-;
(3)∵BD=DG+BG=﹣5a,
∵點(diǎn)M是△OBD的外心,
∴點(diǎn)M在BD的垂直平分線上,OM=MD,
∴n=a,
∵M(m,n),D(4,﹣2a),
∴(
∴8m=6a2+16,
∵n=a,
∴8m=24n2+16,
整理上式,得:m=3n2+2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,點(diǎn)E,F分別是線段BC,AC的中點(diǎn),連結(jié)EF.
(1)線段BE與AF的位置關(guān)系是 ,= .
(2)如圖2,當(dāng)△CEF繞點(diǎn)C順時(shí)針旋轉(zhuǎn)a時(shí)(0°<a<180°),連結(jié)AF,BE,(1)中的結(jié)論是否仍然成立.如果成立,請(qǐng)證明;如果不成立,請(qǐng)說(shuō)明理由.
(3)如圖3,當(dāng)△CEF繞點(diǎn)C順時(shí)針旋轉(zhuǎn)a時(shí)(0°<a<180°),延長(zhǎng)FC交AB于點(diǎn)D,如果AD=6﹣2,求旋轉(zhuǎn)角a的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2007年上海國(guó)際汽車(chē)展期間,某公司對(duì)參觀本次車(chē)展盛會(huì)的且有購(gòu)車(chē)意向的消費(fèi)者進(jìn)行了隨機(jī)問(wèn)卷調(diào)查,共發(fā)放900份調(diào)查問(wèn)卷,并收回有效問(wèn)卷750份.工作人員對(duì)有效調(diào)查問(wèn)卷作了統(tǒng)計(jì),其中:
①將消費(fèi)者年收入的情況整理后,制成表格如下:
年收入(萬(wàn)元) | 4.8 | 6 | 7.2 | 9 | 10 |
被調(diào)查的消費(fèi)者人數(shù)(人) | 150 | 338 | 160 | 60 | 42 |
②將消費(fèi)者打算購(gòu)買(mǎi)小車(chē)的情況整理后,繪制出頻數(shù)分布直方圖(如圖,尚未繪完整).(注:每組包含最小值不包含最大值.)請(qǐng)你根據(jù)以上信息,回答下列問(wèn)題:
(1)根據(jù)①中信息可知,被調(diào)查消費(fèi)者的年收入的中位數(shù)是______萬(wàn)元.
(2)請(qǐng)?jiān)趫D中補(bǔ)全這個(gè)頻數(shù)分布直方圖.
(3)打算購(gòu)買(mǎi)價(jià)格10萬(wàn)元以下(不含10萬(wàn)元)小車(chē)的消費(fèi)者人數(shù)占被調(diào)查消費(fèi)者人數(shù)的百分比是_______.
(4)本次調(diào)查的結(jié)果,是否能夠代表全市所有居民的年收入情況和購(gòu)車(chē)意向?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】五家堯草莓是我旗的特色農(nóng)產(chǎn)品,深受人們的喜歡.某超市對(duì)進(jìn)貨價(jià)為10元/千克的某種草莓的銷(xiāo)售情況進(jìn)行統(tǒng)計(jì),發(fā)現(xiàn)每天銷(xiāo)售量y(千克)與銷(xiāo)售價(jià)x(元/千克)存在一次函數(shù)關(guān)系,如圖所示.
(1)求y關(guān)于x的函數(shù)關(guān)系式(不要求寫(xiě)出x的取值范圍);
(2)為了讓顧客得到實(shí)惠,商場(chǎng)將銷(xiāo)售價(jià)定為多少時(shí),該品種草莓每天銷(xiāo)售利潤(rùn)為150元?
(3)應(yīng)怎樣確定銷(xiāo)售價(jià),使該品種草莓的每天銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,BC=4,過(guò)對(duì)角線BD的中點(diǎn)O的直線分別交AB、CD于點(diǎn)E、F,連接DE,BF.
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)四邊形BEDF是菱形時(shí),求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】自2016年國(guó)慶后,許多高校均投放了使用手機(jī)就可隨用的共享單車(chē).某運(yùn)營(yíng)商為提高其經(jīng)營(yíng)的A品牌共享單車(chē)的市場(chǎng)占有率,準(zhǔn)備對(duì)收費(fèi)作如下調(diào)整:一天中,同一個(gè)人第一次使用的車(chē)費(fèi)按0.5元收取,每增加一次,當(dāng)次車(chē)費(fèi)就比上次車(chē)費(fèi)減少0.1元,第6次開(kāi)始,當(dāng)次用車(chē)免費(fèi).具體收費(fèi)標(biāo)準(zhǔn)如下:
使用次數(shù) | 0 | 1 | 2 | 3 | 4 | 5(含5次以上) |
累計(jì)車(chē)費(fèi) | 0 | 0.5 | 0.9 | 1.5 |
同時(shí),就此收費(fèi)方案隨機(jī)調(diào)查了某高校100名師生在一天中使用A品牌共享單車(chē)的意愿,得到如下數(shù)據(jù):
使用次數(shù) | 0 | 1 | 2 | 3 | 4 | 5 |
人數(shù) | 5 | 15 | 10 | 30 | 25 | 15 |
(Ⅰ)寫(xiě)出的值;
(Ⅱ)已知該校有5000名師生,且A品牌共享單車(chē)投放該校一天的費(fèi)用為5800元.試估計(jì):收費(fèi)調(diào)整后,此運(yùn)營(yíng)商在該校投放A品牌共享單車(chē)能否獲利? 說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】武漢素有“首義之區(qū)”的美名,2011年9月9日,武漢與臺(tái)灣將共同紀(jì)念辛亥革命一百周年.某校為了了解全校學(xué)生對(duì)辛亥革命的了解程度,隨機(jī)抽取了部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,并根據(jù)收集的信息進(jìn)行了統(tǒng)計(jì),繪制了下面尚不完整的統(tǒng)計(jì)圖. 根據(jù)以上的信息,下列判斷:①參加問(wèn)卷調(diào)查的學(xué)生有50名;②參加進(jìn)行問(wèn)卷調(diào)查的學(xué)生中,“基本了解”的有10人;③扇形圖中“基本了解”部分的扇形的圓心角的度數(shù)是108°;④在參加進(jìn)行問(wèn)卷調(diào)查的學(xué)生中,“了解”的學(xué)生占10%.
其中結(jié)論正確的序號(hào)是( ).
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】聳立在臨清市城北大運(yùn)河?xùn)|岸的舍利寶塔,是“運(yùn)河四大名塔”之一(如圖1).數(shù)學(xué)興趣小組的小亮同學(xué)在塔上觀景點(diǎn)P處,利用測(cè)角儀測(cè)得運(yùn)河兩岸上的A,B兩點(diǎn)的俯角分別為17.9°,22°,并測(cè)得塔底點(diǎn)C到點(diǎn)B的距離為142米(A、B、C在同一直線上,如圖2),求運(yùn)河兩岸上的A、B兩點(diǎn)的距離(精確到1米).(參考數(shù)據(jù):sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin17.9°≈0.31,cos17.9°≈0.95,tan17.9°≈0.32)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形DEFG的頂點(diǎn)D、E在△ABC的邊BC上,頂點(diǎn)G、F分別在邊AB、AC上.如果BC=4,△ABC的面積是6,那么這個(gè)正方形的邊長(zhǎng)是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com