精英家教網 > 初中數學 > 題目詳情
如圖,將三個正方形A、B、C按如圖拼接,當這三個正方形的面積SA、SB、SC之間滿足
SA+SB=SC
SA+SB=SC
時,中間所形成的三角形是直角三角形.
分析:由勾股定理的逆定理和正方形的面積公式填空即可.
解答:解:設A,B,C三個正方形的邊長分別為a,b,c,則
SA=a2,SB=b2,SC=c2,
若中間所形成的三角形是直角三角形則:a2+b2=c2,
即SA+SB=SC
故答案為:SA+SB=SC
點評:本題考查了勾股定理的逆定理和正方形的面積公式運用,題目比較簡單.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,將三個正方形和三個矩形拼成一個較大的矩形,請用一個因式分解的式子表示這個拼圖:
(a+2b)(a+b)
(a+2b)(a+b)

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

如圖,將三個正方形A、B、C按如圖拼接,當這三個正方形的面積SA、SB、SC之間滿足________時,中間所形成的三角形是直角三角形.

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

如圖,將三個正方形和三個矩形拼成一個較大的矩形,請用一個因式分解的式子表示這個拼圖:________.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,將三個正方形A、B、C按如圖拼接,當這三個正方形的面積SA、SB、SC之間滿足______時,中間所形成的三角形是直角三角形.
精英家教網

查看答案和解析>>

同步練習冊答案