【題目】已知數(shù)列{an}與{bn}滿(mǎn)足an=2bn+3(n∈N*),若{bn}的前n項(xiàng)和為Sn= (3n﹣1)且λan>bn+36(n﹣3)+3λ對(duì)一切n∈N*恒成立,則實(shí)數(shù)λ的取值范圍是 .
【答案】( ,+∞)
【解析】解:由Sn= (3n﹣1),得 , 當(dāng)n≥2時(shí), ,
當(dāng)n=1時(shí),上式成立,∴ .
代入an=2bn+3,得 ,
代入λan>bn+36(n﹣3)+3λ,得λ(an﹣3)>bn+36(n﹣3),
即2λ3n>3n+36(n﹣3),
則λ> + .
由 = ,得n≤3.
∴n=4時(shí), + 有最大值為 .
故答案為:( ,+∞).
由{bn}的前n項(xiàng)和為Sn= (3n﹣1)求得bn , 進(jìn)一步得到an , 把a(bǔ)n , bn代入λan>bn+36(n﹣3)+3λ,分離λ,然后求出關(guān)于n的函數(shù)的最大值得答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,底面ABCD是直角梯形,∠ADC=90°,AD∥BC,AB⊥AC,AB=AC= ,點(diǎn)E在AD上,且AE=2ED.
(Ⅰ)已知點(diǎn)F在BC上,且CF=2FB,求證:平面PEF⊥平面PAC;
(Ⅱ)若△PBC的面積是梯形ABCD面積的 ,求點(diǎn)E到平面PBC的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=m﹣|x﹣1|,(m>0),且f(x+1)≥0的解集為[﹣3,3]. (Ⅰ)求m的值;
(Ⅱ)若正實(shí)數(shù)a,b,c滿(mǎn)足 ,求證:a+2b+3c≥3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對(duì)于點(diǎn)P(x,y),我們把點(diǎn)P′(﹣y+1,x+1)叫做點(diǎn)P的伴隨點(diǎn),已知點(diǎn)A1的伴隨點(diǎn)為A2,點(diǎn)A2的伴隨點(diǎn)為A3,點(diǎn)A3的伴隨點(diǎn)為A4,…,這樣依次得到點(diǎn)A1,A2,A3,…,An.
(1)若點(diǎn)A1的坐標(biāo)為(2,1),則點(diǎn)A4的坐標(biāo)為_____;
(2)若點(diǎn)A1的坐標(biāo)為(a,b),對(duì)于任意的正整數(shù)n,點(diǎn)An均在x軸上方,則a,b應(yīng)滿(mǎn)足的條件為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=|x+a|,g(x)=|x+3|﹣x,記關(guān)于x的不等式f(x)<g(x)的解集為M.
(1)若a﹣3∈M,求實(shí)數(shù)a的取值范圍;
(2)若[﹣1,1]M,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓E:(x+ )2+y2=16,點(diǎn)F( ,0),P是圓E上任意一點(diǎn),線段PF的垂直平分線和半徑PE相交于Q.(Ⅰ)求動(dòng)點(diǎn)Q的軌跡E的方程; (Ⅱ)直線l過(guò)點(diǎn)(1,1),且與軌跡Γ交于A,B兩點(diǎn),點(diǎn)M滿(mǎn)足 = ,點(diǎn)O為坐標(biāo)原點(diǎn),延長(zhǎng)線段OM與軌跡Γ交于點(diǎn)R,四邊形OARB能否為平行四邊形?若能,求出此時(shí)直線l的方程,若不能,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三角形△ABC的三邊長(zhǎng)構(gòu)成公差為2的等差數(shù)列,且最大角的正弦值為 ,則這個(gè)三角形的周長(zhǎng)為( )
A.15
B.18
C.21
D.24
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在以A、B、C、D、E為頂點(diǎn)的五面體中,AD⊥平面ABC,AD∥BE,AC⊥CB,AB=2BE=4AD=4.
(1)O為AB的中點(diǎn),F(xiàn)是線段BE上的一點(diǎn),BE=4BF,證明:OF∥平面CDE;
(2)當(dāng)直線DE與平面CBE所成角的正切值為 時(shí),求平面CDE與平面ABC所成銳二面角的余弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,點(diǎn)O為△ABD的外心,點(diǎn)C為直徑BD下方弧BCD上一點(diǎn),且不與點(diǎn)B,D重合,∠ACB=∠ABD=45°,則下列對(duì)AC,BC,CD之間的數(shù)量關(guān)系判斷正確的是( )
A.AC=BC+CD
B. AC=BC+CD
C. AC=BC+CD
D.2AC=BC+CD
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com