【題目】如圖,MN∥BC,BD⊥DC,∠1=∠2=60°.
(1)AB 與 DE 平行嗎?請(qǐng)說(shuō)明理由;
(2)若 DC 是∠NDE 的平分線.
①試說(shuō)明∠ABC=∠C;
②試說(shuō)明 BD 是∠ABC 的平分線.
【答案】(1)AB∥DE,理由見(jiàn)解析;(2)見(jiàn)解析.
【解析】(1)首先根據(jù)平行線的性質(zhì),兩直線平行,內(nèi)錯(cuò)角相等即可證得∠ABC=∠1=60°,進(jìn)而證明∠ABC=∠2,根據(jù)同位角相等,兩直線平行,即可證得;
(2)①根據(jù)平行線的性質(zhì),兩直線平行,同旁?xún)?nèi)角互補(bǔ)求得∠NDE的度數(shù),然后根據(jù)角平分線的定義,以及平行線的性質(zhì)即可求得∠C的度數(shù),從而判斷;
②在直角△BCD中,求得∠DBC的度數(shù),然后求得∠ABD的度數(shù),即可證得.
(1)AB∥DE,理由如下:
∵MN∥BC( 已知 ),
∴∠ABC=∠1=60°( 兩直線平行,內(nèi)錯(cuò)角相等 ).
又∵∠1=∠2( 已知 ).
∴∠ABC=∠2( 等量代換 ).
∴AB∥DE( 同位角相等,兩直線平行 );
(2)①∵MN∥BC,
∴∠NDE+∠2=180°,
∴∠NDE=180°﹣∠2=180°﹣60°=120°.
∵DC 是∠NDE 的平分線,
∴∠EDC=∠NDC=∠NDE=60°.
∵MN∥BC,
∴∠C=∠NDC=60°.
∴∠ABC=∠C.
②∠ADC=180°﹣∠NDC=180°﹣60°=120°,
∵BD⊥DC,
∴∠BDC=90°.
∴∠ADB=∠ADC﹣∠BDC=120°﹣90°=30°.
∵MN∥BC,
∴∠DBC=∠ADB=30°.
∴∠ABD=∠DBC=∠ABC.
∴BD 是∠ABC 的平分線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,轉(zhuǎn)盤(pán)被等分成八個(gè)扇形,并在上面依次標(biāo)有數(shù)字1,2,3,4,5,6,7,8.
(1)自由轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),當(dāng)它停止轉(zhuǎn)動(dòng)時(shí),指針指向的數(shù)正好能整除8的概率是多少?
(2)請(qǐng)你用這個(gè)轉(zhuǎn)盤(pán)設(shè)計(jì)一個(gè)游戲,當(dāng)自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)停止時(shí),指針指向的區(qū)域的概率為.(注:指針指在邊緣處,要重新轉(zhuǎn),直至指到非邊緣處)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位有職工200人,其中青年職工(20﹣35歲),中年職工(35﹣50歲),老年職工(50歲及 以上)所占比例如扇形統(tǒng)計(jì)圖所示. 為了解該單位職工的健康情況,小張、小王和小李各自對(duì)單位職工進(jìn)行了抽樣調(diào)查,將收集的數(shù)據(jù)進(jìn)行了整理,繪制的統(tǒng)計(jì)表分別為表1、表2和表3.
表1:小張抽樣調(diào)查單位3名職工的健康指數(shù)
年齡 | 26 | 42 | 57 |
健康指數(shù) | 97 | 79 | 72 |
表2:小王抽樣調(diào)查單位10名職工的健康指數(shù)
年齡 | 23 | 25 | 26 | 32 | 33 | 37 | 39 | 42 | 48 | 52 |
健康指數(shù) | 93 | 89 | 90 | 83 | 79 | 75 | 80 | 69 | 68 | 60 |
表3:小李抽樣調(diào)查單位10名職工的健康指數(shù)
年齡 | 22 | 29 | 31 | 36 | 39 | 40 | 43 | 46 | 51 | 55 |
健康指數(shù) | 94 | 90 | 88 | 85 | 82 | 78 | 72 | 76 | 62 | 60 |
根據(jù)上述材料回答問(wèn)題:
(1)小張、小王和小李三人中,誰(shuí)的抽樣調(diào)查的數(shù)據(jù)能夠較好地反映出該單位職工健康情況,并簡(jiǎn)要說(shuō)明其他兩位同學(xué)抽樣調(diào)查的不足之處.
(2)根據(jù)能夠較好地反映出該單位職工健康情況表,繪制出青年職工、中年職工、老年職工健康指數(shù)的平均數(shù)的直方圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,四邊形ABCD中,BC∥AD,∠A=90°,點(diǎn)P從A點(diǎn)出發(fā),沿折線AB→BC→CD運(yùn)動(dòng),到點(diǎn)D時(shí)停止,已知△PAD的面積s與點(diǎn)P運(yùn)動(dòng)的路程x的函數(shù)圖象如圖②所示,則點(diǎn)P從開(kāi)始到停止運(yùn)動(dòng)的總路程為( )
A.4
B.2+
C.5
D.4+
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一副直角三角尺疊放如圖 1 所示,現(xiàn)將 45°的三角尺ADE 固定不動(dòng),將含 30°的三角尺 ABC 繞頂點(diǎn) A 順時(shí)針轉(zhuǎn)動(dòng)(旋轉(zhuǎn)角不超過(guò) 180 度),使兩塊三角尺至少有一組邊互相平行.如圖 2:當(dāng)∠BAD=15°時(shí),BC∥DE.則∠BAD(0°<∠BAD<180°)其它所有可能符合條件的度數(shù)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,隧道的截面由半圓和長(zhǎng)方形構(gòu)成,長(zhǎng)方形的長(zhǎng)BC為8m,寬AB為1m,該隧道內(nèi)設(shè)雙向行駛的車(chē)道(共有2條車(chē)道),若現(xiàn)有一輛貨運(yùn)卡車(chē)高4m,寬2.3m。則這輛貨運(yùn)卡車(chē)能否通過(guò)該隧道?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,矩形OEFG的頂點(diǎn)E的坐標(biāo)為(4,0),頂點(diǎn)G的坐標(biāo)為(0,2),將矩形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),使點(diǎn)F落在y軸的點(diǎn)N處,得到矩形OMNP,OM與GF交于點(diǎn)A.
(1)求圖象經(jīng)過(guò)點(diǎn)A的反比例函數(shù)的解析式;
(2)設(shè)(2)中的反比例函數(shù)圖象交EF于點(diǎn)B,直接寫(xiě)出直線AB的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先化簡(jiǎn),再求值: ÷(a+2﹣ ),其中x2﹣2 x+a=0有兩個(gè)不相等的實(shí)數(shù)根,且a為非負(fù)整數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,∠C=30°,以邊上AC上一點(diǎn)O為圓心,OA為半徑作⊙O,⊙O恰好經(jīng)過(guò)邊BC的中點(diǎn)D,并與邊AC相交于另一點(diǎn)F.
(1)求證:BD是⊙O的切線.
(2)若AB= ,E是半圓 上一動(dòng)點(diǎn),連接AE,AD,DE. 填空:
①當(dāng) 的長(zhǎng)度是時(shí),四邊形ABDE是菱形;
②當(dāng) 的長(zhǎng)度是時(shí),△ADE是直角三角形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com