【題目】如圖,AB是半圓的直徑,點(diǎn)D是 的中點(diǎn),且AB=4,∠BAC=50°,則AD的長(zhǎng)度為cm(結(jié)果保留π).
【答案】 π
【解析】解:如圖,連接AD,OD.(O為圓心).
∵ = ,
∴∠CAD=∠DAB= ∠CAB=25°,
∵OA=OD,
∴∠OAD=∠ODA=25°,
∴∠AOD=180°﹣50°=130°,
∴ 的長(zhǎng)= = π.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解角平分線的性質(zhì)定理(定理1:在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等; 定理2:一個(gè)角的兩邊的距離相等的點(diǎn),在這個(gè)角的平分線上),還要掌握?qǐng)A周角定理(頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形紙片ABCD,AB=a,BC=b,且b<a<2b,則∠ADC的平分線DE折疊紙片,點(diǎn)A落在CD邊上的點(diǎn)F處,再沿∠BEF的平分線EG折疊紙片,點(diǎn)B落在EF邊上的點(diǎn)H處,則四邊形CGHF的周長(zhǎng)是( )
A.2a
B.2b
C.2(a﹣b)
D.a+b
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,對(duì)△ABC,D是BC邊上一點(diǎn),連結(jié)AD,當(dāng) = 時(shí),稱AD為BC邊上的“平方比線”.同理AB和AC邊上也存在類(lèi)似的“平方比線”.
(1)如圖2,△ABC中,∠BAC=RT∠,AD⊥BC于D.
證明:AD為BC邊上的“平方比線”;
(2)如圖3,在平面直角坐標(biāo)系中,B(﹣4,0),C(1,0),在y軸的正半軸上找一點(diǎn)A,使OA是△ABC中BC邊上的“平方比線”.
①求出點(diǎn)A的坐標(biāo);
②如圖4,以M( ,0)為圓心,MA為半徑作圓,在⊙M上任取一點(diǎn)P(與x軸交點(diǎn)除外)嗎,連結(jié)PB,PC,PO.求證:PO始終是△PBC中BC邊上的“平方比線”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)A,B分別是二次函數(shù)y=2x2的圖象上的兩個(gè)點(diǎn),A、B的橫坐標(biāo)分別為a,b(a<0,b>0),點(diǎn)P(0,t)是拋物線對(duì)稱軸上的任意一點(diǎn).
(1)當(dāng)a+b=0時(shí),探究是否存在t,使得△PAB是以AB為底的等腰三角形?若存在,請(qǐng)直接寫(xiě)出t、a、b的其中一組值;若不存在,請(qǐng)說(shuō)明理由;
(2)當(dāng)a+b≠0時(shí),探究是否存在t,使得△PAB是以AB為底的等腰三角形?若存在,請(qǐng)寫(xiě)出t的取值范圍,并用含t的代數(shù)式表示a2+b2的值;若不存在,請(qǐng)說(shuō)明理由;
(3)如圖2作邊長(zhǎng)為4的正方形ACDE(A、C、D、E按逆時(shí)針排列),使得AC∥x軸,若邊CD與二次函數(shù)的圖象總有交點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過(guò)A(﹣1,0)、B(3,0)兩點(diǎn).
(1)求拋物線的解析式和頂點(diǎn)坐標(biāo);
(2)當(dāng)0<x<3時(shí),求y的取值范圍;
(3)點(diǎn)P為拋物線上一點(diǎn),若S△PAB=10,求出此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC是矩形,其中點(diǎn)A在x軸的正半軸上,點(diǎn)B的坐標(biāo)為(4,2),點(diǎn)D為對(duì)角線OB上一個(gè)動(dòng)點(diǎn)(不包括端點(diǎn)),∠BCD的平分線交OB于點(diǎn)E.
(1)求線段OB所在直線的函數(shù)表達(dá)式,并寫(xiě)出CD的取值范圍.
(2)當(dāng)∠BCD的平分線經(jīng)過(guò)點(diǎn)A時(shí),求點(diǎn)D的坐標(biāo).
(3)點(diǎn)P是線段BC上的一個(gè)動(dòng)點(diǎn),求CD十DP的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,O是坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)是(﹣1,0),點(diǎn)C的坐標(biāo)是(0,﹣3).
(1)求拋物線的函數(shù)表達(dá)式;
(2)求直線BC的函數(shù)表達(dá)式和∠ABC的度數(shù);
(3)在線段BC上是否存在一點(diǎn)P,使△ABP∽△CBA?若存在,求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,P為AD上一點(diǎn),連接BP,CP,過(guò)C作CE⊥BP于點(diǎn)E,連接ED交PC于點(diǎn)F.
(1)求證:△ABP∽△ECB;
(2)若點(diǎn)E恰好為BP的中點(diǎn),且AB=3,AP=k(0<k<3).
①求 的值(用含k的代數(shù)式表示);
②若M、N分別為PC,EC上的任意兩點(diǎn),連接NF,NM,當(dāng)k= 時(shí),求NF+NM的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,甲、乙兩動(dòng)點(diǎn)分別從正方形ABCD的頂點(diǎn)A、C同時(shí)沿正方形的邊開(kāi)始移動(dòng),甲點(diǎn)依順時(shí)針?lè)较颦h(huán)行,乙點(diǎn)依逆時(shí)針?lè)较颦h(huán)行.若甲的速度是乙的速度的3倍,則它們第2015次相遇在邊上.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com