如圖,已知點(diǎn)A(8,0),sin∠ABO=
4
5
,拋物線(xiàn)經(jīng)過(guò)點(diǎn)O、A,且頂點(diǎn)在△AOB的外接圓上,則此拋物線(xiàn)的解析式為( 。
A.y=-
1
2
x2+4x
B.y=-
1
8
x2+x
C.y=
1
2
x2-4x
或y=-
1
8
x2+x
D.y=-
1
2
x2+4x
或y=
1
8
x2-x

如圖所示:連接AC,過(guò)圓心O′作EF⊥OA,
∵∠AOC=90°,∠ABO=∠OCA,
AO
AC
=
4
5
,
∵點(diǎn)A(8,0),
∴AC=10,
根據(jù)題意得出:AM=OM=4,AO′=5,
∴MO′=3,∴MF=2,
∴F點(diǎn)坐標(biāo)為:(4,-2),
設(shè)過(guò)O,A,F(xiàn)的拋物線(xiàn)解析式為:y=a(x-4)2-2,
將A代入(8,0)得:
0=a(8-4)2-2,
解得:a=
1
8

∴此時(shí)拋物線(xiàn)解析式為:y=
1
8
(x-4)2-2=
1
8
x2-x,
根據(jù)題意得出:AM=OM=4,AO′=5,
∴MO′=3,∴ME=8,
∴E點(diǎn)坐標(biāo)為:(4,8),
設(shè)過(guò)O,A,E的拋物線(xiàn)解析式為:y=a(x-4)2+8,
將A代入(8,0)得:
0=a(8-4)2+8,
解得:a=-
1
2
,
∴此時(shí)拋物線(xiàn)解析式為:y=-
1
2
(x-4)2+8=-
1
2
x2+x,
故選:D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線(xiàn)y=-x2+bx+c的圖象經(jīng)過(guò)(1,0)和(0,3)兩點(diǎn),它的部分圖象如下圖.
(1)求b、c的值;
(2)寫(xiě)出當(dāng)y>0時(shí),x的取值范圍;
(3)求y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,將腰長(zhǎng)為
5
的等腰Rt△ABC(∠C是直角)放在平面直角坐標(biāo)系中的第二象限,其中點(diǎn)A在y軸上,點(diǎn)B在拋物線(xiàn)y=ax2+ax-2上,點(diǎn)C的坐標(biāo)為(-1,0).
(1)點(diǎn)A的坐標(biāo)為_(kāi)_____,點(diǎn)B的坐標(biāo)為_(kāi)_____;
(2)拋物線(xiàn)的關(guān)系式為_(kāi)_____,其頂點(diǎn)坐標(biāo)為_(kāi)_____;
(3)將三角板ABC繞頂點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)90°,到達(dá)△AB′C′的位置.請(qǐng)判斷點(diǎn)B′、C′是否在(2)中的拋物線(xiàn)上,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

己知:二次函數(shù)y=ax2+bx+6(a≠0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)A、點(diǎn)B的橫坐標(biāo)是一元二次方程x2-4x-12=0的兩個(gè)根.
(1)請(qǐng)直接寫(xiě)出點(diǎn)A、點(diǎn)B的坐標(biāo).
(2)請(qǐng)求出該二次函數(shù)表達(dá)式及對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo).
(3)如圖1,在二次函數(shù)對(duì)稱(chēng)軸上是否存在點(diǎn)P,使△APC的周長(zhǎng)最小,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(4)如圖2,連接AC、BC,點(diǎn)Q是線(xiàn)段0B上一個(gè)動(dòng)點(diǎn)(點(diǎn)Q不與點(diǎn)0、B重合).過(guò)點(diǎn)Q作QDAC交BC于點(diǎn)D,設(shè)Q點(diǎn)坐標(biāo)(m,0),當(dāng)△CDQ面積S最大時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

我們把一個(gè)半圓與拋物線(xiàn)的一部分合成的封閉圖形稱(chēng)為“蛋圓”,如果一條直線(xiàn)與“蛋圓”只有一個(gè)交點(diǎn),那么這條直線(xiàn)叫做“蛋圓”的切線(xiàn).如圖,點(diǎn)A,B,C,D分別是“蛋圓”與坐標(biāo)軸的交點(diǎn),已知點(diǎn)D的坐標(biāo)為(0,-3),AB為半圓的直徑,半圓圓心M的坐標(biāo)為(1,0),半圓半徑為2,則經(jīng)過(guò)點(diǎn)C的“蛋圓”切線(xiàn)EC的解析式是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,Rt△AOB的頂點(diǎn)坐標(biāo)分別為A(0,2),O(0,0),B(4,0),△AOB繞O點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到△COD.
(1)求C、D兩點(diǎn)的坐標(biāo);
(2)求經(jīng)過(guò)C、D、B三點(diǎn)的拋物線(xiàn)的解析式;
(3)設(shè)(2)中的拋物線(xiàn)的頂點(diǎn)為P,AB的中點(diǎn)為M,試判斷△PMB是鈍角三角形、直角三角形還是銳角三角形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,將直線(xiàn)y=kx沿y軸向下平移3個(gè)單位長(zhǎng)度后恰好經(jīng)過(guò)B(-3,0)及y軸上的C點(diǎn).若拋物線(xiàn)y=-x2+bx+c與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),且經(jīng)過(guò)點(diǎn)C,其對(duì)稱(chēng)軸與直線(xiàn)BC交于點(diǎn)E,與x軸交于點(diǎn)F.
(1)求直線(xiàn)BC及拋物線(xiàn)的解析式;
(2)設(shè)拋物線(xiàn)的頂點(diǎn)為D,點(diǎn)P在拋物線(xiàn)的對(duì)稱(chēng)軸上,若∠APD=∠ACB,求點(diǎn)P的坐標(biāo);
(3)在拋物線(xiàn)上是否存在點(diǎn)M,使得直線(xiàn)CM把四邊形EFOC分成面積相等的兩部分?若存在,請(qǐng)求出直線(xiàn)CM的解析式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

兒童商場(chǎng)購(gòu)進(jìn)一批M型服裝,銷(xiāo)售時(shí)標(biāo)價(jià)為75元/件,按8折銷(xiāo)售仍可獲利50%.商場(chǎng)現(xiàn)決定對(duì)M型服裝開(kāi)展促銷(xiāo)活動(dòng),每件在8折的基礎(chǔ)上再降價(jià)x元銷(xiāo)售,已知每天銷(xiāo)售數(shù)量y(件)與降價(jià)x(元)之間的函數(shù)關(guān)系式為y=20+4x(x>0).
(1)求M型服裝的進(jìn)價(jià);
(2)求促銷(xiāo)期間每天銷(xiāo)售M型服裝所獲得的利潤(rùn)W的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,拋物線(xiàn)與x軸交于點(diǎn)A(-1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,-3).以AB為直徑作⊙M,過(guò)拋物線(xiàn)上一點(diǎn)P作⊙M的切線(xiàn)PD,切點(diǎn)為D,并與⊙M的切線(xiàn)AE相交于點(diǎn)E,連接DM并延長(zhǎng)交⊙M于點(diǎn)N,連接AN、AD.
(1)求拋物線(xiàn)所對(duì)應(yīng)的函數(shù)關(guān)系式及拋物線(xiàn)的頂點(diǎn)坐標(biāo);
(2)若四邊形EAMD的面積為4
3
,求直線(xiàn)PD的函數(shù)關(guān)系式;
(3)拋物線(xiàn)上是否存在點(diǎn)P,使得四邊形EAMD的面積等于△DAN的面積?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案