【題目】在平面直角坐標(biāo)系xOy中,過(guò)原點(diǎn)O及點(diǎn)A(0,2)、C(6,0)作矩形OABC,∠AOC的平分線(xiàn)交AB于點(diǎn)D.點(diǎn)P從點(diǎn)O出發(fā),以每秒 個(gè)單位長(zhǎng)度的速度沿射線(xiàn)OD方向移動(dòng);同時(shí)點(diǎn)Q從點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿x軸正方向移動(dòng).設(shè)移動(dòng)時(shí)間為t秒.
(1)當(dāng)點(diǎn)P移動(dòng)到點(diǎn)D時(shí),求出此時(shí)t的值;
(2)當(dāng)t為何值時(shí),△PQB為直角三角形;
(3)已知過(guò)O、P、Q三點(diǎn)的拋物線(xiàn)解析式為y=﹣ (x﹣t)2+t(t>0).問(wèn)是否存在某一時(shí)刻t,將△PQB繞某點(diǎn)旋轉(zhuǎn)180°后,三個(gè)對(duì)應(yīng)頂點(diǎn)恰好都落在上述拋物線(xiàn)上?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】
(1)
解:∵四邊形OABC是矩形,
∴∠AOC=∠OAB=90°,
∵OD平分∠AOC,
∴∠AOD=∠DOQ=45°,
∴在Rt△AOD中,∠ADO=45°,
∴AO=AD=2,OD=2 ,
∴t= =2
(2)
解:要使△PQB為直角三角形,顯然只有∠PQB=90°或∠PBQ=90°.
如圖1,作PG⊥OC于點(diǎn)G,在Rt△POG中,
∵∠POQ=45°,
∴∠OPG=45°,
∵OP= t,
∴OG=PG=t,
∴點(diǎn)P(t,t)
又∵Q(2t,0),B(6,2),
根據(jù)兩點(diǎn)間的距離公式可得:PB2=(6﹣t)2+(2﹣t)2,QB2=(6﹣2t)2+22,PQ2=(2t﹣t)2+t2=2t2,
①若∠PQB=90°,則有PQ2+BQ2=PB2,
即:2t2+[(6﹣2t)2+22]=(6﹣t)2+(2﹣t)2,
整理得:4t2﹣8t=0,
解得:t1=0(舍去),t2=2,
∴t=2,
②若∠PBQ=90°,則有PB2+QB2=PQ2,
∴[(6﹣t)2+(2﹣t)2]+[(6﹣2t)2+22]=2t2,
整理得:t2﹣10t+20=0,
解得:t=5± .
∴當(dāng)t=2或t=5+ 或t=5﹣ 時(shí),△PQB為直角三角形.
解法2:①如圖2,當(dāng)∠PQB=90°時(shí),
易知∠OPQ=90°,
∴BQ∥OD
∴∠BQC=∠POQ=45°
可得QC=BC=2,
∴OQ=4,
∴2t=4,
∴t=2,
②如圖3,當(dāng)∠PBQ=90°時(shí),若點(diǎn)Q在OC上,
作PN⊥x軸于點(diǎn)N,交AB于點(diǎn)M,
則易證∠PBM=∠CBQ,
∴△PMB∽△QCB
∴ = ,
∴CBPM=QCMB,
∴2(t﹣2)=(2t﹣6)(6﹣t),
化簡(jiǎn)得t2﹣10t+20=0,
解得:t=5± ,
∴t=5﹣ ;
③如圖4,當(dāng)∠PBQ=90°時(shí),若點(diǎn)Q在OC的延長(zhǎng)線(xiàn)上,
作PN⊥x軸于點(diǎn)N,交AB延長(zhǎng)線(xiàn)于點(diǎn)M,
則易證∠BPM=∠MBQ=∠BQC,
∴△PMB∽△QCB,
∴ = ,
∴CBPM=QCMB,
∴2(t﹣2)=(2t﹣6)(t﹣6),
化簡(jiǎn)得t2﹣10t+20=0,
解得:t=5± ,
∴t=5+
(3)
解:存在這樣的t值,理由如下:
將△PQB繞某點(diǎn)旋轉(zhuǎn)180°,三個(gè)對(duì)應(yīng)頂點(diǎn)恰好都落在拋物線(xiàn)上,
則旋轉(zhuǎn)中心為PQ中點(diǎn),此時(shí)四邊形PBQB′為平行四邊形.
∵PO=PQ,由P(t,t),Q(2t,0),知旋轉(zhuǎn)中心坐標(biāo)可表示為( t, t),
∵點(diǎn)B坐標(biāo)為(6,2),
∴點(diǎn)B′的坐標(biāo)為(3t﹣6,t﹣2),
代入y=﹣ (x﹣t)2+t,得:2t2﹣13t+18=0,
解得:t1= ,t2=2
【解析】(1)首先根據(jù)矩形的性質(zhì)求出DO的長(zhǎng),進(jìn)而得出t的值;(2)要使△PQB為直角三角形,顯然只有∠PQB=90°或∠PBQ=90°,進(jìn)而利用勾股定理分別分析得出PB2=(6﹣t)2+(2﹣t)2 , QB2=(6﹣2t)2+22 , PQ2=(2t﹣t)2+t2=2t2 , 再分別就∠PQB=90°和∠PBQ=90°討論,求出符合題意的t值即可;(3)存在這樣的t值,若將△PQB繞某點(diǎn)旋轉(zhuǎn)180°,三個(gè)對(duì)應(yīng)頂點(diǎn)恰好都落在拋物線(xiàn)上,則旋轉(zhuǎn)中心為PQ中點(diǎn),此時(shí)四邊形PBQB′為平行四邊形,根據(jù)平行四邊形的性質(zhì)和對(duì)稱(chēng)性可求出t的值.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用二次函數(shù)的性質(zhì)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握增減性:當(dāng)a>0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而減。粚(duì)稱(chēng)軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而增大;對(duì)稱(chēng)軸右邊,y隨x增大而減小.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)y=﹣x﹣交x軸于點(diǎn)A,交y軸于點(diǎn)C,直線(xiàn)y=x﹣5交x軸于點(diǎn)B,在平面內(nèi)有一點(diǎn)E,其坐標(biāo)為(4,),連接CB,點(diǎn)K是線(xiàn)段CB的中點(diǎn),另有兩點(diǎn)M,N,其坐標(biāo)分別為(a,0),(a+1,0).將K點(diǎn)先向左平移 個(gè)單位,再向上平移個(gè)單位得K′,當(dāng)以K′,E,M,N四點(diǎn)為頂點(diǎn)的四邊形周長(zhǎng)最短時(shí),a的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=4,D是AB上的一點(diǎn)(不與點(diǎn)A、B重合),DE∥BC,交AC于點(diǎn)E,則 的最大值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市出租車(chē)計(jì)費(fèi)方法如圖所示,x(km)表示行駛里程,y(元)表示車(chē)費(fèi),請(qǐng)根據(jù)圖象回答下面的問(wèn)題:
(1)出租車(chē)的起步價(jià)是多少元?當(dāng)x>3時(shí),求y關(guān)于x的函數(shù)關(guān)系式.
(2)若某乘客有一次乘出租車(chē)的車(chē)費(fèi)為32元,求這位乘客乘車(chē)的里程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一個(gè)矩形的一邊是另一邊的兩倍,則稱(chēng)這個(gè)矩形為方形,如圖1,矩形ABCD中,BC=2AB,則稱(chēng)ABCD為方形.
(1)設(shè)a,b是方形的一組鄰邊長(zhǎng),寫(xiě)出a,b的值(一組即可).
(2)在△ABC中,將AB,AC分別五等分,連結(jié)兩邊對(duì)應(yīng)的等分點(diǎn),以這些連結(jié)線(xiàn)為一邊作矩形,使這些矩形的邊B1C1 , B2C2 , B3C3 , B4C4的對(duì)邊分別在B2C2 , B3C3 , B4C4 , BC上,如圖2所示.
①若BC=25,BC邊上的高為20,判斷以B1C1為一邊的矩形是不是方形?為什么?
②若以B3C3為一邊的矩形為方形,求BC與BC邊上的高之比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)C的坐標(biāo)為(5,1). ①畫(huà)出△ABC關(guān)于y軸對(duì)稱(chēng)的△A1B1C1 , 并寫(xiě)出點(diǎn)C1的坐標(biāo);
②連結(jié)BC1 , 在坐標(biāo)平面的格點(diǎn)上確定一個(gè)點(diǎn)P,使△B C1P是以B C1為底的等腰直角三角形,畫(huà)出△B C1P,并寫(xiě)出所有P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】老師在黑板上書(shū)寫(xiě)了一個(gè)正確的演算過(guò)程,隨后用手掌捂住了一個(gè)二次三項(xiàng)式,形式如下:
﹣3x=x2﹣5x+1
(1)求所捂的二次三項(xiàng)式;
(2)若x=+1,求所捂二次三項(xiàng)式的值;
(3)如果 +1的整數(shù)部分為a,則a2= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師提出如下問(wèn)題:
如圖1,P,Q是直線(xiàn)l同側(cè)兩點(diǎn),請(qǐng)你在直線(xiàn)l上確定一個(gè)點(diǎn)R,使△PQR的周長(zhǎng)最。
小陽(yáng)的解決方法如下:
如圖2,
(1)作點(diǎn)Q關(guān)于直線(xiàn)l的對(duì)稱(chēng)點(diǎn)Q;
(2)連接PQ′交直線(xiàn)l于點(diǎn)R;
(3)連接RQ,PQ.
所以點(diǎn)R就是使△PQR周長(zhǎng)最小的點(diǎn).
老師說(shuō):“小陽(yáng)的作法正確.”
請(qǐng)回答:小陽(yáng)的作圖依據(jù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)y=(x﹣m)2﹣(x﹣m),其中m是常數(shù).
(1)求證:不論m為何值,該拋物線(xiàn)與x軸一定有兩個(gè)公共點(diǎn);
(2)若該拋物線(xiàn)的對(duì)稱(chēng)軸為直線(xiàn)x= . ①求該拋物線(xiàn)的函數(shù)解析式;
②把該拋物線(xiàn)沿y軸向上平移多少個(gè)單位長(zhǎng)度后,得到的拋物線(xiàn)與x軸只有一個(gè)公共點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com