【題目】某商店需要購進甲、乙兩種商品共130件,其進價和獲利情況如下表:
(1)若商店計劃銷售完這批商品后能獲利1100元,問甲、乙兩種商品應(yīng)分別購進多少件?
(2)若商店計劃投入資金少于3000元,且銷售完這批商品后總獲利多于1048元,請問有哪些購貨方案?
【答案】(1)甲種商品購進50件,乙種商品購進80件;(2)有兩種購貨方案:方案一:甲種商品購進61件,乙種商品購進69件;方案二:甲種商品購進62件,乙種商品購進68件.
【解析】
(1)設(shè)甲種商品應(yīng)購進x件,乙種商品應(yīng)購進y件,根據(jù)購進甲、乙兩種商品共130件且銷售完這批商品后能獲利1100元,即可得出關(guān)于x、y的二元一次方程組,解之即可得出結(jié)論;
(2)設(shè)甲種商品購進a件,則乙種商品購進(130-a)件,根據(jù)購貨資金少于3000元且銷售完這批商品后獲利多于1048元,即可得出關(guān)于a的一元一次不等式組,解之即可得出a的取值范圍,取其內(nèi)的整數(shù)即可得出各購貨方案.
(1)設(shè)甲種商品應(yīng)購進x件,乙種商品應(yīng)購進y件.
根據(jù)題意得:,
解得:.
答:甲種商品購進50件,乙種商品購進80件.
(2)設(shè)甲種商品購進a件,則乙種商品購進(130-a)件.
根據(jù)題意得:,
解得:60<a<63.
∵a為非負(fù)整數(shù),
∴a取61,62,
∴130-a相應(yīng)取69,68.
答:有兩種購貨方案:方案一:甲種商品購進61件,乙種商品購進69件;方案二:甲種商品購進62件,乙種商品購進68件.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx﹣2與x軸交于A、B兩點,與y軸交于C點,且A(﹣1,0).
(1)求拋物線的解析式及頂點D的坐標(biāo);
(2)判斷△ABC的形狀,證明你的結(jié)論;
(3)點M是x軸上的一個動點,當(dāng)△DCM的周長最小時,求點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=DC,E、F分別是AD、BC的中點,G、H分別是對角線BD、AC的中點.
(1)求證:四邊形EGFH是菱形;
(2)若AB=1,則當(dāng)∠ABC+∠DCB=90°時,求四邊形EGFH的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在8×8的網(wǎng)格中的每個小正方形邊長都是1,線段交點稱作格點.任意連接這些格點,可得到一些線段.按要求作圖:
(1)請畫出△ABC的高AD;
(2)請連接格點,用一條線段將圖中△ABC分成面積相等的兩部分;
(3)直接寫出△ABC的面積是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓心都在x軸正半軸上的半圓O1,半圓O2,…,半圓On與直線l相切.設(shè)半圓O1,半圓O2,…,半圓On的半徑分別是r1,r2,…,rn,則當(dāng)直線l與x軸所成銳角為30°,且r1=1時,r2018=_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示(每個小方格都是邊長為1個單位長度的正方形).
(1)將△ABC沿x軸方向向左平移6個單位,畫出平移后得到的△A1B1C1;
(2)將△ABC繞著點A順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△AB2C2,并直接寫出點B2、C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明解不等式的過程如圖,請指出他解答過程中錯誤步驟的序號,并寫出正確的解答過程.
解:去分母,得3(1+x)-2(2x+1)≤1.①
去括號,得3+3x-4x+1≤1.②
移項,得3x-4x≤1-3-1.③
合并同類項,得-x≤-3.④
兩邊都除以-1,得x≤3.⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【探究函數(shù)y=x+的圖象與性質(zhì)】
(1)函數(shù)y=x+的自變量x的取值范圍是________;
(2)下列四個函數(shù)圖象中,函數(shù)y=x+的圖象大致是________;
(3)對于函數(shù)y=x+,求當(dāng)x>0時,y的取值范圍.請將下列的求解過程補充完整.
解:∵x>0,∴y=x+=()2+=+________.
∵≥0,∴y≥________.
【拓展運用】
(4)若函數(shù)y=,求y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,對角線BD的垂直平分線MN與AD相交于點M,與BC相交于點N.連接BM,DN.
(1)求證:四邊形BMDN是菱形;
(2)若AB=4,AD=8,求MD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com