【題目】(本題12分)如圖,O是坐標原點,矩形OABC的頂點Ax軸的正半軸上,點Cy軸的正半軸上,點D在邊OC上,點B(6,5),且.

(1)填空:CD的長為_____________;

(2)若點EBD的中點,將過點E的直線l繞著點E旋轉,分別與直線OABC相交于點M、N,與直線AB相交于點P,連結AE.

①設點P的縱坐標為t,當△PBE∽△PEA時,求t的值;

②試問:在旋轉的過程中,線段MNBD能否相等?若能,請求出CN的長;若不能,請說明理

【答案】【答案】(1) (2) (3)能相等,理由見解析.

【解析】(1)根據(jù)點B的坐標,可得BC=6.利用tan∠CBD=,即可解答;

(2)①當△PBE∽△PEA時, =,即PE2=PA×PB. 過E作FG∥BC分別交OC、AB于G、F,得到GE是三角形BCD的中位線,從而得到BF=CG=CD=1,GE=BC=3,AF=4,EF=3,由PA=t,PB=t-5,PE=t-4,利用勾股定理得,PE2=PF2+EF2=(t-4)2+32,根據(jù)PE2= PA×PB=|t(t-5)|,得到(t-4)2+32=t(t-5),解方程即可解答;

②MN與BD能相等,理由如下:利用在矩形OABC中,∠BCO=90°,CD=2,BC=6,求出BD==2,如圖2,過O作OQ∥MN,交BC于點Q,則OQ=MN=BD=2,CQ=,從而確定(,5),求出直線OQ的函數(shù)關系式為y=x,直線MN的函數(shù)關系式為y=x+4-,令y=5,得x+4-=5,

解得:x=,所以N1,5)由矩形對稱性得:N2,5)所以CN=也符合題意.

解:(1) ;

(2) ①方法一:當時, ,即.

分別交、、,則的中位線,

,

, , ,

由勾股定理得, ,

.

解得,

得, ,此方程沒有實數(shù)根,

;

方法二:求出, ,

時, ,即,

,整理得, .

解得, (不合題意舍去).∴;

②方法一: 能相等,理由如下:

在矩形中, , ,∴

,交于點,則

,直線的函數(shù)關系式為.

設直線的函數(shù)關系式為,把代入得,

解得,即直線的函數(shù)關系式為.

,得,解得,

.由矩形的對稱性得, .∴也符合題意.

.

方法二: 能相等,理由如下:

在矩形中, , , ,∴.

,如圖,過

于點,過.

, ,△∽△

,

,即. ∴.

根據(jù)矩形的對稱性, .

.

“點睛”本題屬于幾何變換綜合題,考查了相似三角形的性質和判定、勾股定理、旋轉的性質、待定系數(shù)法求解析式,解決本題的關鍵是輔助線的作法,結合圖象用待定系數(shù)法求直線的解析式.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列四組線段能構成直角三角形的是( )

A. a=1,b=2,c=3 B. a=2,b=3,c=4

C. a=2,b=4,c=5 D. a=3,b=4,c=5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一平面內,如果兩條直線都垂直于同一條直線,那么這兩條直線________

1)它的理由如下:(如圖1

ba,ca,∴∠1=2=90°,

bc________

2)如圖2是木工師傅使用角尺畫平行線,有什么道理?________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖1:在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F(xiàn)分別是BC,CD上的點.且∠EAF=60°.探究圖中線段BE,EF,F(xiàn)D之間的數(shù)量關系.

小王同學探究此問題的方法是,延長FD到點G.使DG=BE.連結AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結論,他的結論應是

(2)如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°.E,F(xiàn)分別是BC,CD上的點,且∠EAF=∠BAD上述結論是否仍然成立,并說明理由;

(3)如圖3,在某次軍事演習中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等,接到行動指令后,艦艇甲向正東方向以60海里/小時的速度前進,艦艇乙沿北偏東50°的方向以80海里/小時的速度前進1.5小時后,指揮中心觀測到甲、乙兩艦艇分別到達E,F(xiàn)處,且兩艦艇之間的夾角為70°,試求此時兩艦艇之間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)圖形填空:

(1)若直線ED,BC被直線AB所截,則∠1__________是同位角.

(2)若直線ED,BC被直線AF所截,則∠3__________是內錯角.

(3)1和∠3是直線AB,AF被直線__________所截構成的__________.

(4)2和∠4是直線__________,__________被直線BC所截構成的__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰直角三角形ABC位于第一象限,AB=AC=2,直角頂點A在直線y=x上,其中A點的橫坐標為1,且兩條直角邊AB,AC分別平行于x軸、y軸,若雙曲線y= (k≠0)與△ABC有交點,則k的取值范圍是____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一架直升機從高度為450m的位置開始,先以20m/s的速度上升60s,然后以12m/s的速度下降120s,這時,直升機的高度是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC中,AC+BC=24,AO,BO分別是角平分線,且MNBA,分別交AC于N,BC于M,則CMN的周長為(

A.12 B.24 C.36 D.不確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在下列結論中正確的是(

A.三角形的三個內角中最多有一個銳角

B.三角形的三條高都在三角形內

C.鈍角三角形最多有一個銳角

D.三角形的三條角平分線都在三角形內部

查看答案和解析>>

同步練習冊答案
关 闭