20.在△ABC中,BC=AC,∠BCA=90°,P為直線AC上一點,過點A作AD⊥BP于點D,交直線BC于點Q.

(1)如圖1,當(dāng)P在線段AC上時,求證:BP=AQ;
(2)如圖2,當(dāng)P在線段CA的延長線上時,(1)中的結(jié)論是否成立?成立(填“成立”或“不成立”)
(3)在(2)的條件下,當(dāng)∠DBA=22.5°度時,存在AQ=2BD,說明理由.

分析 (1)首先根據(jù)內(nèi)角和定理得出∠DAP=∠CBP,進而得出△ACQ≌△BCP即可得出答案;
(2)延長BA交PQ于H,由于∠ACQ=∠BDQ=90°,∠AQC=∠BQD,得到∠CAQ=∠DBQ,推出△AQC≌△BPC(ASA)即可得出結(jié)論;
(3)當(dāng)∠DBA=22.5°時,存在AQ=2BD,根據(jù)等腰三角形的性質(zhì)得到BP=2BD,通過△PBC≌△ACQ,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論.

解答 (1)證明:∵∠ACB=∠ADB=90°,∠APD=∠BPC,
∴∠DAP=∠CBP,
在△ACQ和△BCP中$\left\{\begin{array}{l}{∠QCA=∠P∠CB}\\{CA=CB}\\{∠CAQ=∠CBP}\end{array}\right.$
∴△ACQ≌△BCP(ASA),
∴BP=AQ;

(2)成立,
理由:延長BA交PQ于H,
∵∠ACQ=∠BDQ=90°,∠AQC=∠BQD,
∴∠CAQ=∠DBQ,
在△AQC和△BPC中,$\left\{\begin{array}{l}{∠ACQ=∠BCP}\\{CA=CB}\\{∠CAQ=∠BCP}\end{array}\right.$
∴△AQC≌△BPC(ASA),
∴AQ=BP,
故答案為:成立;
(3)當(dāng)∠DBA=22.5°時,存在AQ=2BD,
理由:∵∠BAC=∠DBA+∠APB=45°,
∴∠PBA=∠APB=22.5°,
∴AP=AB,
∵AD⊥BP,
∴BP=2BD,
在△PBC與△QAC中,$\left\{\begin{array}{l}{∠BPC=∠AQC}\\{BC=AC}\\{∠PCB=∠ACQ}\end{array}\right.$,
∴△PBC≌△ACQ,
∴AQ=PB,
∴AQ=2BD.
故答案為:22.5°

點評 此題是三角形綜合題,主要考查了全等三角形的判定與性質(zhì)以及等腰三角形性質(zhì)和三角形內(nèi)角和定理等知識,根據(jù)題意得出全等三角形是解題關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.已知:如圖1,點A在半圓O上運動(不與半圓的兩個端點重合),以AC為對角線作矩形ABCD,使點D落在直徑CE上,CE=8.將△ADC沿AC折疊,得到△AD'C.

(1)求證:AD'是半圓O的切線;
(2)如圖2,當(dāng)AB與CD'的交點F恰好在半圓O上時,連接OA.
①求證:四邊形AOCF是菱形;
②求四邊形AOCF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.根據(jù)所給材料完成第(2)、第(3)兩小題.
(1)基礎(chǔ)知識:如圖a,正方形ABCD的一個頂點B在直線EF上,且AE⊥EF,CF⊥EF,顯然,我們可以證明△ABE≌△BCF.
(2)實踐運用:如圖b,銳角△ABC的頂點C是直線l上方的一個動點,運動過程中始終保持∠ACB=45°,A、B點在直線l上,現(xiàn)分別以A、B為直角頂點,向△ABC外作等腰直角三角形ACE和等腰直角三角形BCF,分別過點E、F作直線l的垂線,垂足為M、N.請問在C點的運動過程中,線段EM+FN的值是否改變,說明你的理由.
(3)變化拓展:當(dāng)圖b中的AB=1,其他條件不變時,隨著C點的變化,△ABC的面積也隨之變化.請直接寫出△ABC面積的最大值為$\frac{\sqrt{2}+1}{4}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.如圖,拋物線頂點坐標(biāo)為點C(2,8),交x軸于點A (6,0),交y軸于點B.
(1)求拋物線和直線AB的解析式;
(2)點Q (x,0)是線段OA上的一動點,過Q點作x軸的垂線,交拋物線于P點,交直線BA于D點,求PD與x之間的函數(shù)關(guān)系式并求出PD的最大值;
(3)x軸上是否存在一點Q,過點Q作x軸的垂線,交拋物線于P點,交直線BA于D點,使以PD為直徑的圓與y軸相切?若存在,求出Q點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在△ABC中,AQ平分∠BAC,QD⊥BC交BC于點D,在BC上取一點E,使得∠BAD=∠CAE,在AE上存在一點K,使得∠KBC=2∠BQD,求證:QK平分∠BKC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.在平面直角坐標(biāo)系中,拋物線y=$\frac{1}{4}$x2-bx+c與x軸交于點A(8,0)、B(2,0)兩點,與y軸交于點C.

(1)如圖1,求拋物線的解析式;
(2)如圖2,點P為第四象限拋物線上一點,連接PB并延長交y軸于點D,若點P的橫坐標(biāo)為t,CD長為d,求d與t的函數(shù)關(guān)系式(并求出自變量t的取值范圍);
(3)如圖3,在(2)的條件下,連接AC,過點P作PH⊥x軸,垂足為點H,延長PH交AC于點E,連接DE,射線DP關(guān)于DE對稱的射線DG交AC于點G,延長DG交拋物線于點F,當(dāng)點G為AC中點時,求點F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在等腰三角形ABC中,兩腰上的中線BE、CD相交于點O.求證:OB=OC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.已知如圖,△ABC為等邊三角形,AB=6cm,D點在BC上,且∠ADE=60°,$\frac{DB}{DC}$=$\frac{1}{2}$,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

10.直線y=kx+b經(jīng)過點(0,0)和(1,2),則它的解析式為y=2x.

查看答案和解析>>

同步練習(xí)冊答案