【題目】如圖,拋物線y=ax2+bx﹣3經(jīng)過點A(2,﹣3),與x軸負(fù)半軸交于點B,與y軸交于點C,且OC=3OB.
(1)求拋物線的解析式;
(2)點D在y軸上,且∠BDO=∠BAC,求點D的坐標(biāo);
(3)點M在拋物線上,點N在拋物線的對稱軸上,是否存在以點A,B,M,N為頂點的四邊形是平行四邊形?若存在,求出所有符合條件的點M的坐標(biāo);若不存在,請說明理由.
【答案】(1)y=x2﹣2x﹣3(2)D1(0,1),D2(0,﹣1)(3)存在以點A,B,M,N為頂點的四邊形是平行四邊形,M(4,5)或(﹣2,5)或(0,﹣3)
【解析】試題分析:(1)待定系數(shù)法求解析式.(2) 連接AC,作BF⊥AC交AC的延長線于F,∠BAC=45°,利用特殊三角形求D點坐標(biāo).(3)分類討論 以AB為邊,則AB∥MN,AB=MN,如圖2,過M作ME⊥對稱軸于E,AF⊥x軸于F,求出M點坐標(biāo),以AB為對角線,BN=AM,BN∥AM,如圖3,求出M點坐標(biāo).
試題解析:
(1)由y=ax2+bx﹣3得C(0.﹣3),
∴OC=3,
∵OC=3OB,
∴OB=1,
∴B(﹣1,0),
把A(2,﹣3),B(﹣1,0)代入y=ax2+bx﹣3得,
∴,
∴拋物線的解析式為y=x2﹣2x﹣3;
(2)設(shè)連接AC,作BF⊥AC交AC的延長線于F,
∵A(2,﹣3),C(0,﹣3),
∴AF∥x軸,
∴F(﹣1,﹣3),
∴BF=3,AF=3,
∴∠BAC=45°,
設(shè)D(0,m),則OD=|m|,
∵∠BDO=∠BAC,
∴∠BDO=45°,
∴OD=OB=1,
∴|m|=1,
∴m=±1,
∴D1(0,1),D2(0,﹣1);
(3)設(shè)M(a,a2﹣2a﹣3),N(1,n),
①以AB為邊,則AB∥MN,AB=MN,如圖2,過M作ME⊥對稱軸于E,AF⊥x軸于F,
則△ABF≌△NME,
∴NE=AF=3,ME=BF=3,
∴|a﹣1|=3,
∴a=4或a=﹣2,
∴M(4,5)或(﹣2,5);
②以AB為對角線,BN=AM,BN∥AM,如圖3,
則N在x軸上,M與C重合,
∴M(0,﹣3),
綜上所述,存在以點A,B,M,N為頂點的四邊形是平行四邊形,M(4,5)或(﹣2,5)或(0,﹣3).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在正方形ABCD中,△AEF的頂點E,F分別在BC,CD邊上,高AG與正方形的邊長相等,
(1)求∠EAF的度數(shù);
(2)在圖①中,連結(jié)BD分別交AE、AF于點M、N,將△ADN繞點A順時針旋轉(zhuǎn)90°至△ABH位置,連結(jié)MH,得到圖②.求證:MN2=MB2+ ND2 ;
(3)在圖②中,若AG=12, BM=,直接寫出MN的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是△ABC的角平分線,點E位于邊BC上,已知BD是BA與BE的比例中項.
(1)求證:∠CDE=∠ABC;
(2)求證:ADCD=ABCE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點E是AD的中點,將△ABE沿直線BE折疊后得到△GBE,延長BG交CD于點F,若AB=6,BC=4,則FD=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形內(nèi)部有若干個點,用這些點以及正方形的頂點、、、把原正方形分割成一些三角形(互相不重疊)
(1)填寫下表:
正方形內(nèi)點的個數(shù) | 1 | 2 | 3 | 4 | … | |
分割成的三角形的個數(shù) | 4 | 6 | ______ | ______ | … | ______ |
(2)如果原正方形內(nèi)有101個點,此時原正方形被分割成多少個三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E、F是正方形ABCD的邊AD上的兩個動點,滿足AE=DF.連接CF交BD于G,連接BE交AG于H.已知正方形ABCD的邊長為4cm,解決下列問題:
(1)求證:BE⊥AG;
(2)求線段DH的長度的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是“作已知角的角平分線”的尺規(guī)作圖過程.
已知:如圖1,∠MON.
求作:射線OP,使它平分∠MON.
作法:如圖2,
(1)以點O為圓心,任意長為半徑作弧,交OM于點A,交ON于點B;
(2)連結(jié)AB;
(3)分別以點A,B為圓心,大于AB的長為半徑作弧,兩弧相交于點P;
(4)作射線OP.
所以,射線OP即為所求作的射線.
請回答:該尺規(guī)作圖的依據(jù)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,BF平分∠ABC交AD于點F,AE⊥BF于點O,交BC于點E,連接EF.
(1)求證:四邊形ABEF是菱形;
(2)連接CF,若∠ABC=60°,AB= 4,AF =2DF,求CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某書店準(zhǔn)備購進甲、乙兩種圖書共100本,購書款不高于2224元,預(yù)這100本圖書全部售完的利潤不低于1100元,兩種圖書的進價、售價如表所示:
甲種圖書 | 乙種圖書 | |
進價(元/本) | 16 | 28 |
售價(元/本) | 26 | 40 |
請回答下列問題:
(1)書店有多少種進書方案?
(2)在這批圖書全部售出的條件下,(1)中的哪種方案利潤最大?最大利潤是多少?(請你用所學(xué)的函數(shù)知識來解決)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com