精英家教網(wǎng)如圖正方形ABCD的邊長為2,AE=EB,線段MN的兩端點分別在CB、CD上滑動,且MN=1,當CM為何值時△AED與以M、N、C為頂點的三角形相似?
分析:根據(jù)AE=EB,△AED中AD=2AE,所以在△MNC中,分CM與AE和AD是對應邊兩種情況利用相似三角形對應邊成比例求出CM與CN的關系,然后利用勾股定理列式計算即可.
解答:解:∵AE=EB,∴AD=2AE,
又∵△AED與以M、N、C為頂點的三角形相似,
∴(1)CM與AD是對應邊時,CM=2CN,
∴CM2+CN2=MN2=1,
即CM2+
1
4
CM2=1,
解得CM=
2
5
5
;

(2)CM與AE是對應邊時,CM=
1
2
CN,
∴CM2+CN2=MN2=1,
即CM2+4CM2=1,
解得CM=
5
5

所以CM為
2
5
5
5
5
時,△AED與以M、N、C為頂點的三角形相似.
點評:本題主要利用相似三角形對應邊成比例的性質和直角三角形勾股定理求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖正方形ABCD的頂點C在直線a上,且點B,D到a的距離分別是1,2.則這個正方形的邊長為( 。
A、1
B、2
C、4
D、
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖正方形ABCD的邊BC的延長線上取點M,使CM=AC=2,AM與CD相交于點N,∠ANC=
 
度,△ACM的面積=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•鄂州)如圖正方形ABCD的邊長為4,E、F分別為DC、BC中點.
(1)求證:△ADE≌△ABF.
(2)求△AEF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖正方形ABCD的邊長是a,△AEF是等邊三角形,點E在BC上,點F在CD上
(1)求證:△ABE≌△ADF;
(2)求等邊△AEF的邊長.

查看答案和解析>>

同步練習冊答案