(2014•寧波一模)如圖,二次函數(shù)y=ax2+bx+c的圖象開口向上,圖象經(jīng)過點(diǎn)(-1,2)和(1,0),且與y軸相交于負(fù)半軸.給出四個(gè)結(jié)論:①abc<0;②a+c=1;③2a+b<0;④b2-4ac>0.其中結(jié)論正確的個(gè)數(shù)為( 。
分析:根據(jù)二次函數(shù)圖象開口向上得到a大于0,由對(duì)稱軸在y軸右側(cè)得到a與b異號(hào),判斷出b小于0,根據(jù)拋物線與y軸交點(diǎn)在y軸負(fù)半軸,得到c小于0,即可對(duì)于abc的符號(hào)做出判斷;將(-1,2)與(1,0)代入二次函數(shù)解析式求出a+c的值;由對(duì)稱軸公式及對(duì)稱軸在y軸右側(cè)判斷出2a+b的正負(fù);根據(jù)拋物線與x軸交點(diǎn)個(gè)數(shù)即可確定根的判別式的正負(fù)即可.
解答:解:∵二次函數(shù)y=ax2+bx+c的圖象開口向上,
∴a>0,
∵對(duì)稱軸在y軸右側(cè),拋物線與y軸交點(diǎn)在負(fù)半軸,
∴0<-
b
2a
<1,c<0,即b<0,2a+b<0,選項(xiàng)③正確,
∴abc>0,選項(xiàng)①錯(cuò)誤;
將(-1,2)與(1,0)代入二次函數(shù)解析式得:
a-b+c=2
a+b+c=0
,
兩方程相加得:a+c=1,選項(xiàng)②正確;
∵-
b
2a
<1,
∴2a<b,
∵b<0,
∴2a+b<0,選項(xiàng)③正確
∵拋物線與x軸有兩個(gè)交點(diǎn),
∴b2-4ac>0,選項(xiàng)④正確,
則結(jié)論正確的個(gè)數(shù)為3,
故選B
點(diǎn)評(píng):此題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,會(huì)利用對(duì)稱軸的范圍求2a與b的關(guān)系,以及二次函數(shù)與方程之間的轉(zhuǎn)換,根的判別式的熟練運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2014•寧波一模)重慶一中綜合實(shí)踐活動(dòng)藝體課程組為了解學(xué)生最喜歡的球類運(yùn)動(dòng),對(duì)足球、乒乓球、籃球、排球四個(gè)項(xiàng)目進(jìn)行了調(diào)查,并將調(diào)查的結(jié)果繪制成如下的兩幅統(tǒng)計(jì)圖(說明:每位同學(xué)只選一種自己最喜歡的球類),請(qǐng)你根據(jù)圖中提供的信息解答下列問題:

(1)求這次接受調(diào)查的學(xué)生人數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求扇形統(tǒng)計(jì)圖中喜歡排球的圓心角度數(shù);
(3)若調(diào)查到愛好“乒乓球”的5名學(xué)生中有3名男生,2名女生,現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生,請(qǐng)用列表法或畫樹狀圖的方法,求出剛好抽到一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2014•寧波一模)鄞州區(qū)某學(xué);@球集訓(xùn)隊(duì)11名隊(duì)員進(jìn)行定點(diǎn)投籃訓(xùn)練,將11名隊(duì)員在1分鐘內(nèi)投進(jìn)籃框的球數(shù)由小到大排序后為6,7,8,9,9,9,9,10,10,10,12,這組數(shù)據(jù)的中位數(shù)是
9
9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2014•寧波一模)如圖,在正方形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,折疊正方形ABCD,使AD落在BD上,點(diǎn)A恰好與BD上的點(diǎn)F重合,展平后,折痕DE分別交AB,AC于點(diǎn)E,G,連接GF,下列結(jié)論:①AE=AG;②tan∠AGE=2;③S△DOG=S四邊形EFOG;④四邊形ABFG為等腰梯形;⑤BE=2OG,則其中正確的結(jié)論個(gè)數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2014•寧波一模)如圖是一把30°的三角尺,外邊AC=8,內(nèi)邊與外邊的距離都是2,那么EF的長(zhǎng)度是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案