【題目】如圖,在平面直角坐標系中,點A,B的坐標分別為A(0,a),B(b,a),且a、b滿足(a﹣2)2+|b﹣4|=0,現(xiàn)同時將點A,B分別向下平移2個單位,再向左平移1個單位,分別得到點A,B的對應(yīng)點C,D,連接AC,BD,AB.
(1)求點C,D的坐標及四邊形ABDC的面積S四邊形ABCD;
(2)在y軸上是否存在一點M,連接MC,MD,使S△MCD=S四邊形ABDC?若存在這樣一點,求出點M的坐標,若不存在,試說明理由;
(3)點P是直線BD上的一個動點,連接PA,PO,當點P在BD上移動時(不與B,D重合),直接寫出∠BAP、∠DOP、∠APO之間滿足的數(shù)量關(guān)系.
【答案】(1)8;(2)M(0,2)或(0,﹣2);(3)①∠APO=∠DOP+∠BAP;②∠DOP=∠BAP+∠APO;③∠BAP=∠DOP+∠APO.
【解析】
(1)先由非負數(shù)性質(zhì)求出a=2,b=4,再根據(jù)平移規(guī)律,得出點C,D的坐標,然后根據(jù)四邊形ABDC的面積=AB×OA即可求解;
(2)存在.設(shè)M坐標為(0,m),根據(jù)S△PAB=S四邊形ABDC,列出方程求出m的值,即可確定M點坐標;
(3)分三種情況求解:①當點P在線段BD上移動時,②當點P在DB的延長線上時,③當點P在BD的延長線上時.
解:(1)∵(a﹣2)2+|b﹣4|=0,
∴a=2,b=4,
∴A(0,2),B(4,2).
∵將點A,B分別向下平移2個單位,再向左平移1個單位,分別得到點A,B的對應(yīng)點C,D,
∴C(﹣1,0),D(3,0).
∴S四邊形ABDC=AB×OA=4×2=8;
(2)在y軸上存在一點M,使S△MCD=S四邊形ABCD.設(shè)M坐標為(0,m).
∵S△MCD=S四邊形ABDC,
∴×4|m|=4,
∴2|m|=4,
解得m=±2.
∴M(0,2)或(0,﹣2);
(3)①當點P在線段BD上移動時,∠APO=∠DOP+∠BAP
理由如下:
過點P作PE∥AB交OA于E.
∵CD由AB平移得到,則CD∥AB,
∴PE∥CD,
∴∠BAP=∠APE,∠DOP=∠OPE,
∴∠BAP+∠DOP=∠APE+∠OPE=∠APO,
②當點P在DB的延長線上時,同①的方法得,∠DOP=∠BAP+∠APO;
③當點P在BD的延長線上時,同①的方法得,∠BAP=∠DOP+∠APO.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+mx+3與x軸交于A,B兩點,與y軸交于點C,點B的坐標為(3,0)
(1)求m的值及拋物線的頂點坐標.
(2)點P是拋物線對稱軸l上的一個動點,當PA+PC的值最小時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察圖形:填空
(1)表示:1+3=4=22;
(2)表示:1+3+5=9=32;
(3)表示:1+3+5+7=16=42;
以此類推,(4)表示: ;
解決問題:求1+3+5+7+……+2019的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一組密碼的一部分,請你運用所學知識找到破譯的“鑰匙”.目前,已破譯出“正做數(shù)學”的真實意思是“祝你成功”.若“正”所處的位置為(x,y),你找到的密碼鑰匙是:橫坐標_____,縱坐標_____,破譯的“今天考試”真實意思是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,若把邊長為1的正方形ABCD的四個角(陰影部分)剪掉,得一四邊形A1B1C1D1 . 試問怎樣剪,才能使剩下的圖形仍為正方形,且剩下圖形的面積為原來正方形面積的 ,請說明理由.(寫出證明及計算過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】運用運算律計算:
(1)0.36+(-7.4)+0.3+(-0.6)+0.64;
(2)(-103)+(+1)+(-97)+(+100)+(-1);
(3)(-3)+(-2.16)+8+3+(-3.84)+(-0.25)+;
(4)(-)+3+|-0.75|+(-5)+|-2|.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.則下列結(jié)論:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤∠AGB+∠AED=145°.其中正確的個數(shù)是( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,若把邊長為1的正方形ABCD的四個角(陰影部分)剪掉,得一四邊形A1B1C1D1 . 試問怎樣剪,才能使剩下的圖形仍為正方形,且剩下圖形的面積為原來正方形面積的 ,請說明理由.(寫出證明及計算過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB,CD相交于點O,OE是∠AOC的平分線,∠BOC=130°,∠BOF=140°,則∠EOF的度數(shù)為( )
A. 95° B. 65°
C. 50° D. 40°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com