如圖,直線y=-
3
3
x+
3
與x軸、y軸相交于點A、B.點P坐標為(-1,0),將△PA精英家教網(wǎng)B沿直線AB翻折得到△CAB,點C恰好為經(jīng)過點A的拋物線的頂點.
(1)求∠BAO的度數(shù);
(2)求此拋物線的解析式.
分析:(1)首先求出A,B兩點坐標,再利用銳角三角函數(shù)求出∠BOA的度數(shù);
(2)利用翻折的性質(zhì)求出C點坐標,利用頂點式求出二次函數(shù)解析式即可.
解答:解:(1)∵直線y=-
3
3
x+
3
與x軸、y軸相交于點A、B,
∴0=-
3
3
x+
3
,
∴x=3,
∴A點坐標為:(3,0),
當x=0,
∴y=
3
,
∴B點坐標為:(0,
3
),
∴BO=
3
,AO=3,
∴tan∠BOA=
3
3

∴∠BOA=30°;
精英家教網(wǎng)
(2)過點C作CD⊥y軸,
點P坐標為(-1,0),
∴PO=1,
∵BO=
3

∴PB=
1 2+(
3
) 2
=2,
∴tan∠POB=
1
3
=
3
3
,
∴∠POB=30°,
∴∠BPA=30°,
∴∠PBA=90°,
∵將△PAB沿直線AB翻折得到△CAB,
∴BC=PB=2,CD=PO=1,
∴BD=
3
,
∴DO=2
3
,
∴C點坐標為:(1,2
3
),
∵點C恰好為經(jīng)過點A的拋物線的頂點.
∴二次函數(shù)解析式為:y=a(x-1)2+2
3
,
將(3,0)代入解析式得:
0=a(3-1)2+2
3
,
∴a=-
3
2

∴此拋物線的解析式為:y=-
3
2
(x-1)2+2
3
點評:此題考查了二次函數(shù)的綜合應(yīng)用;圖形的翻折問題要找準對應(yīng)量,進行線段與角的等效轉(zhuǎn)移,利用直角三角形求解是正確解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線y=-
3
3
 
x+1
和x軸、y軸分別交于點A、點B,以線段AB為邊在第一象限作等邊三角形ABC,且在第一象限內(nèi)有點P(m,
1
2
),使△ABP的面積與△ABC的面積相等,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖,直線AB、CD相交于O,∠COE是直角,∠1=57°,則∠2=
33°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線AB的解析式為y=-
3
3
x+6
,分別與x軸、y軸相交于B、A兩點.點C在射線BA上以3cm/秒的速度運動,以C點為圓心作半徑為1cm的⊙C.點P以2cm/秒的速度在線段OA上來回運動,過點P作直線l垂直與y軸.若點C與點P同時從點B、點O開始運動,設(shè)運動時間為t秒,則在整個運動過程中直線l與⊙C共有
3
3
次相切;直線l與⊙C最后一次相切時t=
26
7
26
7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線y=x+2與雙曲線y=
kx
相交于點A,點A的縱坐標為3,k的值為
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線AB,CD分別交直線EF于點G,H,AB∥CD,則圖中與∠AGE相等的角有
3
3
個.

查看答案和解析>>

同步練習(xí)冊答案