在一個(gè)不透明的盒子中,共有“一白三黑”4個(gè)圍棋子,它們除了顏色之外沒(méi)有其他區(qū)別.
(1)隨機(jī)地從盒中提出1子,則提出白子的概率是多少?
(2)隨機(jī)地從盒中提出1子,不放回再提第二子.請(qǐng)你用畫(huà)樹(shù)狀圖或列表的方法表示所有等可能的結(jié)果,并求恰好提出“一黑一白”子的概率.
【答案】分析:(1)由共有“一白三黑”4個(gè)圍棋子,利用概率公式直接求解即可求得答案;
(2)首先畫(huà)出樹(shù)狀圖,然后由樹(shù)狀圖求得所有等可能的結(jié)果與恰好提出“一黑一白”子的情況,然后利用概率公式求解即可求得答案.
解答:解:(1)∵共有“一白三黑”4個(gè)圍棋子,
∴P(白子)=;

(2)畫(huà)樹(shù)狀圖得:
∵共有12種等可能的結(jié)果,恰好提出“一黑一白”子的有6種情況,
∴P(一黑一白)==
點(diǎn)評(píng):此題考查的是用列表法或樹(shù)狀圖法求概率的知識(shí).列表法或樹(shù)狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹(shù)狀圖法適合兩步或兩步以上完成的事件;解題時(shí)要注意此題是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•棗莊)在一個(gè)不透明的盒子中裝有8個(gè)白球,若干個(gè)黃球,它們除顏色不同外,其余均相同,若從中隨機(jī)摸出一個(gè)球?yàn)榘浊虻母怕适?span id="kqqmwau" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
2
3
,則黃球的個(gè)數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在一個(gè)不透明的盒子中,共有“一白三黑”四枚圍棋子,它們除顏色外無(wú)其他區(qū)別.
(1)隨機(jī)地從盒子中取出1枚,則取出的是白子的概率是多少?
(2)隨機(jī)地從盒子中取出1枚,不放回再取出第二枚,請(qǐng)用畫(huà)樹(shù)狀圖或列表的方式表示出所有等可能的結(jié)果,并求出恰好取到“兩枚棋子顏色不相同”的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•西城區(qū)一模)在一個(gè)不透明的盒子中裝有3個(gè)紅球、2個(gè)黃球和1個(gè)綠球,這些球除顏色外,沒(méi)有任何其他區(qū)別,現(xiàn)從這個(gè)盒子中隨機(jī)摸出一個(gè)球,摸到黃球的概率為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•長(zhǎng)沙)在一個(gè)不透明的盒子中裝有n個(gè)小球,它們只有顏色上的區(qū)別,其中有2個(gè)紅球,每次摸球前先將盒中的球搖勻,隨機(jī)摸出一個(gè)球記下顏色后再放回盒中,通過(guò)大量重復(fù)試驗(yàn)后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定于0.2,那么可以推算出n大約是
10
10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在一個(gè)不透明的盒子中裝有相同形狀和大小的2個(gè)黃球、1個(gè)黑球和若干紅球,且已知從盒中隨機(jī)摸出一個(gè)球?yàn)辄S球的概率為
13

(1)則盒中有
3
3
個(gè)紅球;
(2)一枚棋子放在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正五邊形ABCDE的頂點(diǎn)A處,將棋子沿邊按順時(shí)針?lè)较蜃邉?dòng),通過(guò)摸球來(lái)確定棋子的走法.其規(guī)則是:摸到紅球,則棋子走1個(gè)單位長(zhǎng)度,摸到黃球,則棋子走2個(gè)單位長(zhǎng)度,摸到黑球,則棋子走3個(gè)單位長(zhǎng)度,先摸出一個(gè)球,再?gòu)氖O碌那蛑忻鲆粋(gè)球,根據(jù)摸出的兩個(gè)球的顏色兩次連續(xù)走動(dòng)棋子.兩次連續(xù)走動(dòng)之后,棋子走到哪一點(diǎn)的可能性最大?并求出棋子走到該點(diǎn)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案