(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經過點A,BD⊥直線m, CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中為任意銳角或鈍角.請問結論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
(3) 拓展與應用:如圖(3),D、E是D、A、E三點所在直線m上的兩動點(D、A、E三點互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
科目:初中數(shù)學 來源: 題型:
在− , ,,0.3030030003,− ,3.14中,無理數(shù)的個數(shù)是 ( )
A.2個 B.3個 C.4個 D.5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
“龜兔首次賽跑”之后,輸了比賽的兔子沒有氣餒,總結反思后,和烏龜約定再賽一場.圖中的函數(shù)圖象刻畫了“龜兔再次賽跑”的故事(x表示烏龜從起點出發(fā)所行的時間,y1表示烏龜所行的路程,y2表示兔子所行的路程).有下列說法:
①“龜兔再次賽跑”的路程為1000米;
②兔子和烏龜同時從起點出發(fā);
③烏龜在途中休息了10分鐘;
④兔子在途中750米處追上烏龜.
其中正確的說法是 。(把你認為正確說法的序號都填上)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
問題背景:在△ABC中,AB、BC、AC三邊的長分別為、、,求這個三角形BC邊上的高.
杰杰同學在解答這道題時,先建立一個正方形網格(每個小正方形的邊長為1),再在網格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處).借用網格等知識就能計算出這個三角形BC邊上的高.
(1)請在正方形網格中畫出格點△ABC;(2)求出這個三角形BC邊上的高.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
.如圖,點B、C、E在同一條直線上,△ABC與△CDE都是等邊三角形,則下列結論不一定成立的是( )
| A. | △ACE≌△BCD | B. | △BGC≌△AFC | C. | △DCG≌△ECF | D. | △ADB≌△CEA |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com