如圖,在等腰Rt△ABC中,∠BAC=90°,BC=2,點E為線段AB上任意一點(E不與B重合),以CE為斜邊作等腰Rt△CDE,連接AD,下列結(jié)論:
①∠BCE=∠ACD;②∠BCE=∠AED;③BE=AD;④AD∥BC;⑤四邊形ABCD的面積有最大值,且最大值為
3
2

其中正確的結(jié)論有( 。﹤.
分析:首先根據(jù)已知條件利用等腰直角三角形的性質(zhì)以及相似三角形的判定與性質(zhì)分別進行判斷各結(jié)論是否正確.
解答:解:∵△ABC、△DCE都是等腰Rt△,
∴AB=AC=
2
2
BC=
2
,CD=DE=
2
2
CE;
∠B=∠ACB=∠DEC=∠DCE=45°;
①∵∠ACB=∠DCE=45°,
∴∠ACB-∠ACE=∠DCE-∠ACE;
即∠ECB=∠DCA;故①正確;

②∵∠AED+∠DEC+∠BEC=180°,∠DEC=45°,
∴∠AED+∠BEC=135°,
又∵∠BCE+∠BEC=180°-∠B=180°-45°=135°,
∴∠AED=∠BCE,故此選項正確;

③∵
CD
EC
=
AC
BC
=
2
2
,
CD
AC
=
CE
BC
;
由①知∠ECB=∠DCA,
∴△BEC∽△ADC;
AD
BE
=
2
2
,
∴BE≠AD,故此選項錯誤;

④∵△BEC∽△ADC;
∴∠DAC=∠B=45°;
∴∠DAC=∠BCA=45°,
即AD∥BC,故④正確;

⑤△ABC的面積為定值,若梯形ABCD的面積最大,則△ACD的面積最大;
△ACD中,AD邊上的高為定值(即為1),若△ACD的面積最大,則AD的長最大;
由④的△BEC∽△ADC知:當AD最長時,BE也最長;
故梯形ABCD面積最大時,E、A重合,此時EC=AC=
2
,AD=1;
故S梯形ABCD=
1
2
(1+2)×1=
3
2
,故⑤正確;
因此本題正確的結(jié)論是①②④⑤共4個,
故選:D.
點評:此題主要考查了等腰直角三角形的性質(zhì)、平行線的判定、相似三角形的判定和性質(zhì)、圖形面積的求法等知識,綜合性強,難度較大.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在等腰Rt△ABC中,∠C=90°,AC=8,F(xiàn)是AB邊上的中點,點D,E分別在AC,BC邊上運動,且保持AD=CE.連接DE,DF,EF.在此運動變化的過程中,下列結(jié)論:
①△DFE是等腰直角三角形;
②四邊形CDFE不可能為正方形,
③DE長度的最小值為4;
④四邊形CDFE的面積保持不變;
⑤△CDE面積的最大值為8.
其中正確的結(jié)論是( 。
A、①②③B、①④⑤C、①③④D、③④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等腰Rt△ABC中,∠C=90°,AC=8,F(xiàn)是AB邊上的中點,點D、E分別在AC、BC邊精英家教網(wǎng)上運動,且保持AD=CE.連接DE、DF、EF.
①求證:△DFE是等腰直角三角形;
②在此運動變化的過程中,四邊形CDFE的面積是否保持不變?試說明理由.
③求△CDE面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在等腰Rt△ABC中,∠C=90°,∠CBD=30°,則
ADDC
=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在等腰Rt△ABC中,∠ACB=90°,CA=CB,點M、N是AB上任意兩點,且∠MCN=45°,點T為AB的中點.以下結(jié)論:①AB=
2
AC;②CM2+TN2=NC2+MT2;③AM2+BN2=MN2;④S△CAM+S△CBN=S△CMN.其中正確結(jié)論的序號是( 。
A、①②③④B、只有①②③
C、只有①③④D、只有②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等腰Rt△ABC中,∠C=90°,AC=8
2
,F(xiàn)是AB邊上的中點,點D、E分別在AC、BC邊上運動,且保持AD=CE.連接DE、DF、EF.
(1)在此運動變化的過程中,△DFE是
等腰直角
等腰直角
三角形;
(2)若AD=
2
,求△DFE的面積.

查看答案和解析>>

同步練習冊答案