如圖,四邊形ABCD是菱形,對角線AC與BD交于點O,且AC=80,BD=60.動點M、N分別以每秒1個單位的速度從點A、D同時出發(fā),分別沿A→O→D和D→A運動,當點N到達點A時,M、N同時停止運動.設(shè)運動時間為t秒.
(1)求菱形ABCD的周長;
(2)記△DMN的面積為S,求S關(guān)于t的解析式,并求S的最大值;
(3)當t=30秒時,在線段OD的垂直平分線上是否存在點P,使得∠DPO=∠DON?若存在,這樣的點P有幾個?并求出點P到線段OD的距離;若不存在,請說明理由.
解:(1)在菱形ABCD中,
∵AC⊥BD,AC=80,BD=60,∴。
∴菱形ABCD的周長為200。
(2)過點M作MP⊥AD,垂足為點P.
①當0<t≤40時,如答圖1,
∵,
∴MP=AM•sin∠OAD=t。
S=DN•MP=×t×t=t2。
②當40<t≤50時,如答圖2,MD=70﹣t,
∵,
∴MP=(70﹣t)。
∴S△DMN=DN•MP=×t×(70﹣t)=t2+28t=(t﹣35)2+490。
∴S關(guān)于t的解析式為。
當0<t≤40時,S隨t的增大而增大,當t=40時,最大值為480;
當40<t≤50時,S隨t的增大而減小,最大值不超過480。
綜上所述,S的最大值為480。
(3)存在2個點P,使得∠DPO=∠DON。
如答圖3所示,過點N作NF⊥OD于點F,
則NF=ND•sin∠ODA=30×=24,
DF=ND•cos∠ODA=30×=18。
∴OF=12!。
作∠NOD的平分線交NF于點G,過點G作GH⊥ON于點H,
則FG=GH。
∴S△ONF=OF•NF=S△OGF+S△OGN=OF•FG+ON•GH=(OF+ON)•FG。
∴。
∴。
設(shè)OD中垂線與OD的交點為K,由對稱性可知:∠DPK=∠DPO=∠DON=∠FOG,
∴。
∴PK=。
根據(jù)菱形的對稱性可知,在線段OD的下方存在與點P關(guān)于OD軸對稱的點P′。
∴存在兩個點P到OD的距離都是
解析試題分析:(1)根據(jù)勾股定理及菱形的性質(zhì),求出菱形的周長。
(2)在動點M、N運動過程中:①當0<t≤40時,如答圖1所示,②當40<t≤50時,如答圖2所示.分別求出S的關(guān)系式,然后利用二次函數(shù)的性質(zhì)求出最大值。
(3)如答圖3所示,在Rt△PKD中,DK長可求出,則只有求出tan∠DPK即可,為此,在△ODM中,作輔助線,構(gòu)造Rt△OND,作∠NOD平分線OG,則∠GOF=∠DPK。在Rt△OGF中,求出tan∠GOF的值,從而問題解決。
另解:答圖4所示,作ON的垂直平分線,交OD的垂直平分線EF于點I,連接結(jié)OI,IN,過點N作NG⊥OD,NH⊥EF,垂足分別為G,H。
當t=30時,DN=OD=30,易知△DNG∽△DAO,
∴,即。
∴NG=24,DG=18。
∵EF垂直平分OD,∴OE=ED=15,EG=NH=3。
設(shè)OI=R,EI=x,則
在Rt△OEI中,有R2=152+x2 ①
在Rt△NIH中,有R2=32+(24﹣x)2 ②
由①、②可得:。
∴PE=PI+IE=。
根據(jù)對稱性可得,在BD下方還存在一個點P′也滿足條件。
∴存在兩個點P,到OD的距離都是。
科目:初中數(shù)學(xué) 來源: 題型:解答題
為了落實國務(wù)院的指示精神,某地方政府出臺了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價為每千克20元,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(元/千克)有如下關(guān)系:y=﹣2x+80.設(shè)這種產(chǎn)品每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式.
(2)該產(chǎn)品銷售價定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價部門規(guī)定這種產(chǎn)品的銷售價不高于每千克28元,該農(nóng)戶想要每天獲得150元的銷售利潤,銷售價應(yīng)定為每千克多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點,對稱軸是x=﹣1.
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)動點Q從點O出發(fā),以每秒1個單位長度的速度在線段OA上運動,同時動點M從M從O點出發(fā)以每秒3個單位長度的速度在線段OB上運動,過點Q作x軸的垂線交線段AB于點N,交拋物線于點P,設(shè)運動的時間為t秒.
①當t為何值時,四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
(2013年四川綿陽12分)如圖,二次函數(shù)y=ax2+bx+c的圖象的頂點C的坐標為(0,﹣2),交x軸于A、B兩點,其中A(﹣1,0),直線l:x=m(m>1)與x軸交于D.
(1)求二次函數(shù)的解析式和B的坐標;
(2)在直線l上找點P(P在第一象限),使得以P、D、B為頂點的三角形與以B、C、O為頂點的三角形相似,求點P的坐標(用含m的代數(shù)式表示);
(3)在(2)成立的條件下,在拋物線上是否存在第一象限內(nèi)的點Q,使△BPQ是以P為直角頂點的等腰直角三角形?如果存在,請求出點Q的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線與x軸交于A(﹣1,0),B(3,0)兩點,與y軸交于點C(0,3).
(1)求拋物線的解析式;
(2)設(shè)拋物線的頂點為D,在其對稱軸的右側(cè)的拋物線上是否存在點P,使得△PDC是等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由;
(3)點M是拋物線上一點,以B,C,D,M為頂點的四邊形是直角梯形,試求出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
(2013年四川廣安10分)如圖,在平面直角坐標系xOy中,拋物線y=ax2+bx+c經(jīng)過A、B、C三點,已知點A(﹣3,0),B(0,3),C(1,0).
(1)求此拋物線的解析式.
(2)點P是直線AB上方的拋物線上一動點,(不與點A、B重合),過點P作x軸的垂線,垂足為F,交直線AB于點E,作PD⊥AB于點D.
①動點P在什么位置時,△PDE的周長最大,求出此時P點的坐標;
②連接PA,以AP為邊作圖示一側(cè)的正方形APMN,隨著點P的運動,正方形的大小、位置也隨之改變.當頂點M或N恰好落在拋物線對稱軸上時,求出對應(yīng)的P點的坐標.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標系xOy中,拋物線y=ax2+bx+c交y軸于點C(0,4),對稱軸x=2與x軸交于點D,頂點為M,且DM=OC+OD.
(1)求該拋物線的解析式;
(2)設(shè)點P(x,y)是第一象限內(nèi)該拋物線上的一個動點,△PCD的面積為S,求S關(guān)于x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)在(2)的條件下,若經(jīng)過點P的直線PE與y軸交于點E,是否存在以O(shè)、P、E為頂點的三角形與△OPD全等?若存在,請求出直線PE的解析式;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線y=﹣x2+4與x軸交于A、B兩點,與y軸交于C點,點P是拋物線上的一個動點且在第一象限,過點P作x軸的垂線,垂足為D,交直線BC于點E.
(1)求點A、B、C的坐標和直線BC的解析式;
(2)求△ODE面積的最大值及相應(yīng)的點E的坐標;
(3)是否存在以點P、O、D為頂點的三角形與△OAC相似?若存在,請求出點P的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標系中,四邊形ABCO是梯形,其中A(6,0),B(3,),C(1,),動點P從點O以每秒2個單位的速度向點A運動,動點Q也同時從點B沿B→ C→O的線路以每秒1個單位的速度向點O運動,當點P到達A點時,點Q也隨之停止,設(shè)點P、Q運動的時間為t(秒).
(1)求經(jīng)過A、B、C三點的拋物線的解析式;
(2)當點Q在CO邊上運動時,求△OPQ的面積S與時間t的函數(shù)關(guān)系式;
(3)以O(shè)、P、Q為頂點的三角形能構(gòu)成直角三角形嗎?若能,請求出t的值,若不能,請說明理由;
(4)經(jīng)過A、B、C三點的拋物線的對稱軸、直線OB和PQ能夠交于一點嗎?若能,請求出此時t的值(或范圍),若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com