如圖,正方形ABCD的邊長(zhǎng)為1,點(diǎn)P為BC邊上的任意一點(diǎn)(可與點(diǎn)B或C重合),分別過B、D作AP的垂線段,垂足分別是B1、D1.猜想:的值,并對(duì)你的猜想加以證明.

【答案】分析:首先根據(jù)四邊形ABCD是正方形,得出AD=AB,再根據(jù)∠DD1A=∠AB1B=90°,得出∠DAD1=∠ABB1,從而證出△ADD1≌△BAB1,AD1=BB1,最后再根據(jù) ==AD2,即可求出答案.
解答:解:猜想:的值是1;
證明如下:在△ADD1和△ABB1
∵四邊形ABCD是正方形,
∴AD=AB,
∵AD1⊥DD1,BB1⊥AB1,
∴∠DD1A=∠AB1B=90°,
∵∠DAD1+∠B1AB=∠B1AB+∠ABB1,
∴∠DAD1=∠ABB1,
∴△ADD1≌△BAB1
∴AD1=BB1,
==AD2=1,
=1;
點(diǎn)評(píng):此題考查了正方形的性質(zhì)與直角三角形的性質(zhì).此題難度適中,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用,注意等量代換知識(shí)的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點(diǎn),且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點(diǎn)在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,正方形ABCD的邊長(zhǎng)為4,將一個(gè)足夠大的直角三角板的直角頂點(diǎn)放于點(diǎn)A處,該三角板的兩條直角邊與CD交于點(diǎn)F,與CB延長(zhǎng)線交于點(diǎn)E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長(zhǎng).
(2)觀察猜想BE與DG之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案