【題目】如圖,公路MN為東西走向,在點(diǎn)M北偏東36.5°方向上,距離5千米處是學(xué)校A;在點(diǎn)M北偏東45°方向上距離千米處是學(xué)校B.(參考數(shù)據(jù):,).
(1)求學(xué)校A,B兩點(diǎn)之間的距離
(2)要在公路MN旁修建一個(gè)體育館C,使得A,B兩所學(xué)校到體育館C的距離之和最短,求這個(gè)最短距離.
【答案】(1)km;(2)km.
【解析】
(1)過(guò)點(diǎn)A作CD//MN,BE⊥MN,在Rt△ACM中求出CM,AC,在Rt△MBE中求出BE,ME,繼而得出AD,BD的長(zhǎng)度,在Rt△ABD中利用勾股定理可得出AB的長(zhǎng)度.
(2)作點(diǎn)B關(guān)于MN的對(duì)稱(chēng)點(diǎn)G,連接AG交MN于點(diǎn)P,點(diǎn)P即為站點(diǎn),求出AG的長(zhǎng)度即可.
(1)過(guò)點(diǎn)A作CD//MN,BE⊥MN,如圖:
在Rt△ACM中,∠CMA=36.5°,AM=5km,
∵sin36.5°==0.6,
∴CA=3,MC=4km,
在Rt△MBE中,∠NMB=45°,MB=km,
∵sin45°==,
∴BE=6,ME=6km,
∴AD=CDCA=MECA=3km,BD=BEDE=BECM=2km,
在Rt△ABD中,AB=km.
(2)作點(diǎn)B關(guān)于MN的對(duì)稱(chēng)點(diǎn)G,連接AG交MN于點(diǎn)P,連接PB,點(diǎn)P即為站點(diǎn),
此時(shí)PA+PB=PA+PG=AG,即A,B兩所學(xué)校到體育館C的距離之和最短為AG長(zhǎng)
在Rt△ADG中,AD=3,DG=DE+EG=DE+BE=4+6=10,∠ADG=90°,
∴AG==km.
答:最短距離為km.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】AB是的直徑,點(diǎn)C是上一點(diǎn),連接AC、BC,直線MN過(guò)點(diǎn)C,滿足.
(1)如圖①,求證:直線MN是的切線;
(2)如圖②,點(diǎn)D在線段BC上,過(guò)點(diǎn)D作于點(diǎn)H,直線DH交于點(diǎn)E、F,連接AF并延長(zhǎng)交直線MN于點(diǎn)G,連接CE,且,若的半徑為1,,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(問(wèn)題與情境)
在綜合與實(shí)踐課上,老師組織同學(xué)們以“三角形紙片的旋轉(zhuǎn)”為主題開(kāi)展數(shù)學(xué)活動(dòng).如圖①,現(xiàn)有矩形紙片.連接,將矩形沿剪開(kāi),得到和.保持位置不變,將從圖①的位置開(kāi)始,繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn),旋轉(zhuǎn)角為.
(操作發(fā)現(xiàn))
(1)在旋轉(zhuǎn)過(guò)程中,連接,則當(dāng)時(shí),的值是________;
(2)如圖②,將圖①中的旋轉(zhuǎn),當(dāng)點(diǎn)E落在延長(zhǎng)線上時(shí)停止旋轉(zhuǎn),求出此時(shí)的值;
(實(shí)踐探究)
(3)如圖③,將圖②中的繼續(xù)旋轉(zhuǎn),當(dāng)時(shí)停止旋轉(zhuǎn),直接寫(xiě)出此時(shí)的度數(shù),并求出的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,C為BA延長(zhǎng)線上一點(diǎn),CD是⊙O的切線,D為切點(diǎn),OF⊥AD于點(diǎn)E,交CD于點(diǎn)F.
(1)求證:∠ADC=∠AOF;
(2)若sinC=,BD=8,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是的兩條互相垂直的直徑,點(diǎn)P從點(diǎn)O出發(fā),沿的路線勻速運(yùn)動(dòng),設(shè)(單位:度),那么y與點(diǎn)P運(yùn)動(dòng)的時(shí)間(單位:秒)的關(guān)系圖是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列方程或方程組解應(yīng)用題:
某校初二年級(jí)的同學(xué)乘坐大巴車(chē)去北京展覽館參觀“砥礪奮進(jìn)的五年”大型成就展,北京展覽館距離該校12千米,1號(hào)車(chē)出發(fā)3分鐘后,2號(hào)車(chē)才出發(fā),結(jié)果兩車(chē)同時(shí)到達(dá),已知2號(hào)車(chē)的平均速度是1號(hào)車(chē)的平均速度的1.2倍,求2號(hào)車(chē)的平均速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖①,在矩形ABCD中,在BC邊上是否存在點(diǎn)P,使∠APD=90°,若存在請(qǐng)用直尺和圓規(guī)作出點(diǎn)P(保留作圖痕跡)
(2)若AB=4,AD=10,求出圖①中BP的長(zhǎng).
(3)如圖②,在△ABC中,∠ABC=60°,BC=12,AD是BC邊上的高,E、F分別為AB,AC的中點(diǎn),當(dāng)AD=6時(shí),BC邊上是否存在一點(diǎn)Q,使∠EQF=90°,求此時(shí)BQ的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一輛客車(chē)從甲地出發(fā)前往乙地,平均速度v(千米/小時(shí))與所用時(shí)間t(小時(shí))的函數(shù)關(guān)系如圖所示,其中60≤v≤120.
(1)直接寫(xiě)出v與t的函數(shù)關(guān)系式;
(2)若一輛貨車(chē)同時(shí)從乙地出發(fā)前往甲地,客車(chē)比貨車(chē)平均每小時(shí)多行駛20千米,3小時(shí)后兩車(chē)相遇.
①求兩車(chē)的平均速度;
②甲、乙兩地間有兩個(gè)加油站A、B,它們相距200千米,當(dāng)客車(chē)進(jìn)入B加油站時(shí),貨車(chē)恰好進(jìn)入A加油站(兩車(chē)加油的時(shí)間忽略不計(jì)),求甲地與B加油站的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的盒子中只裝有2個(gè)白色圍棋子和1個(gè)黑色圍棋子,圍棋子除顏色外其余均相同.從這個(gè)盒子中隨機(jī)地摸出1個(gè)圍棋子,記下顏色后放回,攪勻后再隨機(jī)地摸出1個(gè)圍棋子記下顏色.請(qǐng)用畫(huà)樹(shù)狀圖(或列表)的方法,求兩次摸出的圍棋子顏色都是白色的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com