【題目】二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖,關(guān)于該二次函數(shù),下列說法錯(cuò)誤的是( )
A.函數(shù)有最小值
B.當(dāng)﹣1<x<3時(shí),y>0
C.當(dāng)x<1時(shí),y隨x的增大而減小
D.對(duì)稱軸是直線x=1
【答案】B
【解析】解:A、∵拋物線開口向上,
∴函數(shù)有最小值,故本選項(xiàng)正確;
B、當(dāng)﹣1<x<3時(shí),y<0,故本選項(xiàng)錯(cuò)誤;
C、∵拋物線開口向上,
∴當(dāng)x<1時(shí),y隨x的增大而減小,故本選項(xiàng)正確;
D、∵拋物線與x軸的交點(diǎn)坐標(biāo)為(﹣1,0)、(3,0),
∴拋物線的對(duì)稱軸為直線x=1,故本選項(xiàng)正確.
故選B.
【考點(diǎn)精析】本題主要考查了二次函數(shù)的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,OE,OD分別平分∠AOC和∠BOC,
(1)如果∠AOB=90°,∠BOC=38°,求∠DOE的度數(shù);
(2)如果∠AOB=α,∠BOC=β(α、β均為銳角,α>β),其他條件不變,求∠DOE;
(3)從(1)、(2)的結(jié)果中,你發(fā)現(xiàn)了什么規(guī)律,請(qǐng)寫出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司擬為貧困山區(qū)建一所希望小學(xué),甲、乙兩個(gè)工程隊(duì)提交了投標(biāo)方案,若獨(dú)立完成該項(xiàng)目,則甲工程隊(duì)所用時(shí)間是乙工程隊(duì)的1.5倍;若甲、乙兩隊(duì)合作完成該項(xiàng)目,則共需72天.
(1)甲、乙兩隊(duì)單獨(dú)完成建校工程各需多少天?
(2)若由甲工程隊(duì)單獨(dú)施工,平均每天的費(fèi)用為0.8萬元,為了縮短工期,該公司選擇了乙工程隊(duì),但要求其施工的總費(fèi)用不能超過甲工程隊(duì),求乙工程隊(duì)平均每天的施工費(fèi)用最多為多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD∥BC,AF平分∠BAD交BC于點(diǎn)F,BE平分∠ABC交AD于點(diǎn)E.求證:
(1)△ABF是等腰三角形;
(2)四邊形ABFE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC是邊長(zhǎng)為4的等邊三角形,BC在x軸上,點(diǎn)D為BC的中點(diǎn),點(diǎn)A在第一象限內(nèi),AB與y軸的正半軸交與點(diǎn)E,已知點(diǎn)B(﹣1,0).
(1)點(diǎn)A的坐標(biāo): , 點(diǎn)E的坐標(biāo):;
(2)若二次函數(shù)y=﹣ x2+bx+c過點(diǎn)A、E,求此二次函數(shù)的解析式;
(3)P是AC上的一個(gè)動(dòng)點(diǎn)(P與點(diǎn)A、C不重合)連結(jié)PB、PD,設(shè)l是△PBD的周長(zhǎng),當(dāng)l取最小值時(shí),求點(diǎn)P的坐標(biāo)及l(fā)的最小值并判斷此時(shí)點(diǎn)P是否在(2)中所求的拋物線上,請(qǐng)充分說明你的判斷理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為2 的正方形ABCD中,點(diǎn)E為AD邊的中點(diǎn),將△ABE沿BE翻折,使點(diǎn)A落在點(diǎn)A′處,作射線EA′,交BC的延長(zhǎng)線于點(diǎn)F,則CF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+3(a≠0)與x軸、y軸分別交于點(diǎn)A(﹣1,0)、B(3,0)、點(diǎn)C三點(diǎn).
(1)試求拋物線的解析式;
(2)點(diǎn)D(2,m)在第一象限的拋物線上,連接BC,BD.試問,在對(duì)稱軸左側(cè)的拋物線上是否存在一點(diǎn)P,滿足∠PBC=∠DBC?如果存在,請(qǐng)求出點(diǎn)P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說明理由;
(3)如圖2,在(2)的條件下,將△BOC沿x軸正方向以每秒1個(gè)單位長(zhǎng)度的速度向右平移,記平移后的三角形為△B′O′C′.在平移過程中,△B′O′C′與△BCD重疊的面積記為S,設(shè)平移的時(shí)間為t秒,試求S與t之間的函數(shù)關(guān)系式?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】麒麟?yún)^(qū)第七中學(xué)現(xiàn)有一塊空地ABCD如圖所示,現(xiàn)計(jì)劃在空地上種草皮,經(jīng)測(cè)量,∠B=90°,AB=3m,BC=4m,CD=13m,AD=12m.
(1)求出空地ABCD的面積?
(2)若每種植1平方米草皮需要300元,問總共需投入多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com