已知△ABC是等邊三角形,點(diǎn)D、F分別在邊BC、AC上,且DF∥AB,過點(diǎn)A平行于BC的直線與DF的延長線交于點(diǎn)E,連結(jié)CE、BF.
(1)求證:△ABF≌△ACE;
(2)若D是BC的中點(diǎn),判斷△DCE的形狀,并說明理由.
(1)根據(jù)等邊三角形的性質(zhì)可得AB=AC,∠BAC=∠ACB=60°,再根據(jù)平行線的性質(zhì)可得∠EFA=∠BAC=60°,∠CAE=∠ACB=60°,即可得到△EAF是等邊三角形,從而證得結(jié)論;(2)直角三角形
【解析】
試題分析:(1)根據(jù)等邊三角形的性質(zhì)可得AB=AC,∠BAC=∠ACB=60°,再根據(jù)平行線的性質(zhì)可得∠EFA=∠BAC=60°,∠CAE=∠ACB=60°,即可得到△EAF是等邊三角形,從而證得結(jié)論;
(2)連接AD.先根據(jù)平行四邊形的定義證得四邊形ABDE是平行四邊形,即得AE=BD,再根據(jù)中點(diǎn)的性質(zhì)可得BD=DC,再結(jié)合AE∥DC可得四邊形ADCE是平行四邊形,再根據(jù)等腰三角形的性質(zhì)證明即可.
(1)∵△ABC是等邊三角形,
∴AB=AC,∠BAC=∠ACB=60°.
∵DE∥AB,AE∥BD,
∴∠EFA=∠BAC=60°,∠CAE=∠ACB=60°.
∴△EAF是等邊三角形.
∴AF=AE.
在△ABF和△ACE中,
∵AB=AC,∠BAF=∠CAE=60°,AF=AE,
∴△ABF≌△ACE.
(2)△DCE是直角三角形,∠DCE=90°
理由:連接AD.
∵DE∥AB,AE∥BD,
∴四邊形ABDE是平行四邊形.
∴AE=BD.
∵D是BC中點(diǎn),
∴BD=DC.
∴AE=DC.
∵AE∥DC,
∴四邊形ADCE是平行四邊形.
∵AB=AC,D是BC中點(diǎn),
∴AD⊥DC.
∴四邊形ADCE是矩形.
∴△DCE是直角三角形,∠DCE=90°.
考點(diǎn):等邊三角形的性質(zhì),平行線的性質(zhì),全等三角形的判定和性質(zhì),平行四邊形的判定和性質(zhì),等腰三角形的性質(zhì),矩形的判定和性質(zhì)
點(diǎn)評(píng):本題知識(shí)點(diǎn)較多,綜合性較強(qiáng),是中考常見題,熟練掌握平面圖形的基本性質(zhì)是解題關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
![]() | BC |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013屆北京市八年級(jí)上學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:填空題
已知D是等邊△ABC外一點(diǎn),∠BDC=120º則AD、BD、DC三條線段的數(shù)量關(guān)系為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2009年廣東省廣州市花都區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com