9、點(diǎn)P(a,b)中,若ab>0,則點(diǎn)P在第
一,三
象限.
分析:先根據(jù)ab>0得出a,b同號,再分類討論其同號或異號的情況即可.
解答:解:∵ab>0,∴a,b同號,
當(dāng)a>0,b>0時,點(diǎn)在第一象限;
當(dāng)a<0,b<0時,點(diǎn)在第三象限.
故點(diǎn)P在第一或三象限.
點(diǎn)評:解決本題的關(guān)鍵是掌握好四個象限的點(diǎn)的坐標(biāo)的特征:第一象限正正,第二象限負(fù)正,第三象限負(fù)負(fù),第四象限正負(fù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•玄武區(qū)二模)如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.動點(diǎn)P從點(diǎn)A開始沿折線AC-CB-BA運(yùn)動,點(diǎn)P在AC,CB,BA邊上運(yùn)動,速度分別為每秒3,4,5個單位.直線l從與AC重合的位置開始,以每秒
43
個單位的速度沿CB方向平行移動,即移動過程中保持l∥AC,且分別與CB,AB邊交于E,F(xiàn)兩點(diǎn),點(diǎn)P與直線l同時出發(fā),設(shè)運(yùn)動的時間為t秒,當(dāng)點(diǎn)P第一次回到點(diǎn)A時,點(diǎn)P和直線l同時停止運(yùn)動.
(1)當(dāng)t=5秒時,點(diǎn)P走過的路徑長為
19
19
;當(dāng)t=
3
3
秒時,點(diǎn)P與點(diǎn)E重合;
(2)當(dāng)點(diǎn)P在AC邊上運(yùn)動時,將△PEF繞點(diǎn)E逆時針旋轉(zhuǎn),使得點(diǎn)P的對應(yīng)點(diǎn)M落在EF上,點(diǎn)F的對應(yīng)點(diǎn)記為點(diǎn)N,當(dāng)EN⊥AB時,求t的值;
(3)當(dāng)點(diǎn)P在折線AC-CB-BA上運(yùn)動時,作點(diǎn)P關(guān)于直線EF的對稱點(diǎn),記為點(diǎn)Q.在點(diǎn)P與直線l運(yùn)動的過程中,若形成的四邊形PEQF為菱形,請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•長寧區(qū)二模)如圖,在直角坐標(biāo)平面中,O為原點(diǎn),A(0,6),B(8,0).點(diǎn)P從點(diǎn)A出發(fā),以每秒2個單位長度的速度沿射線AO方向運(yùn)動,點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個單位長度的速度沿x軸正方向運(yùn)動.
P、Q兩動點(diǎn)同時出發(fā),設(shè)移動時間為t(t>0)秒.
(1)在點(diǎn)P、Q的運(yùn)動過程中,若△POQ與△AOB相似,求t的值;
(2)如圖(2),當(dāng)直線PQ與線段AB交于點(diǎn)M,且
BM
MA
=
1
5
時,求直線PQ的解析式;
(3)以點(diǎn)O為圓心,OP長為半徑畫⊙O,以點(diǎn)B為圓心,BQ長為半徑畫⊙B,討論⊙O和⊙B的位置關(guān)系,并直接寫出相應(yīng)t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如下4個圖中,不同的矩形ABCD,若把D點(diǎn)沿AE對折,使D點(diǎn)與BC上的F點(diǎn)重合;
(1)圖①中,若DE:EC=2:1,求證:△ABF∽△AFE∽△FCE;并計算BF:FC.
(2)圖②中若DE:EC=3:1,計算BF:FC=
1:2
1:2
;圖③中若DE:EC=4:1,計算BF:FC=
1:3
1:3

(3)圖④中若DE:EC=n:1,猜想BF:FC=
1:(n-1)
1:(n-1)
;并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年江蘇省無錫市江陰市初級中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

如圖,在直角坐標(biāo)平面中,O為原點(diǎn),A(0,6),B(8,0).點(diǎn)P從點(diǎn)A出發(fā),以每秒2個單位長度的速度沿射線AO方向運(yùn)動,點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個單位長度的速度沿x軸正方向運(yùn)動.
P、Q兩動點(diǎn)同時出發(fā),設(shè)移動時間為t(t>0)秒.
(1)在點(diǎn)P、Q的運(yùn)動過程中,若△POQ與△AOB相似,求t的值;
(2)如圖(2),當(dāng)直線PQ與線段AB交于點(diǎn)M,且時,求直線PQ的解析式;
(3)以點(diǎn)O為圓心,OP長為半徑畫⊙O,以點(diǎn)B為圓心,BQ長為半徑畫⊙B,討論⊙O和⊙B的位置關(guān)系,并直接寫出相應(yīng)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案