檢驗是否是方程組的解.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如下面第一幅圖,點A的坐標為(-1,1)
(1)那么點B,點C的坐標分別為
 
;
(2)若一個關(guān)于x,y的二元一次方程,有兩個解是
x=點A的橫坐標
y=點A的縱坐標
x=點B的橫坐標
y=點B的縱坐標
請寫出這個二元一次方程,并檢驗說明點C的坐標值是否是它的解.
(3)任。2)中方程的又一個解(不與前面的解雷同),將該解中x的值作為點D的橫坐標,y的值作為點D的縱坐標,在下面第一幅圖中描出點D;
(4)在下面第一幅圖中作直線AB與直線AC,則直線AB與直線AC的位置關(guān)系
 
,點D與直線AB的位置關(guān)系是
 

(5)若把直線AB叫做(2)中方程的圖象,類似地請在備用圖上畫出二元一次方程組
x+y=4
x-y=-2
中兩個二元一次方程的圖象,并用一句話來概括你對二元一次方程組的解與它圖象之間的發(fā)現(xiàn).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:雙色筆記八年級數(shù)學上(北京師大版) 題型:044

判斷下列兩組數(shù)值是否是方程組的解.

(1)  (2)

點評:本題考察二元一次方程組的解的檢驗,要把被檢驗的數(shù)值代入方程組里的每一個方程,同時滿足的數(shù)值才是方程組的解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

檢驗方程組的解時,必須將求得的未知數(shù)的值代入方程組中的每一個方程.
例1:解方程組數(shù)學公式
思路分析:本例這兩個方程中①較簡單,且x、y的系數(shù)均為1,故可把①變形,把x用y表示,或把y用x來表示皆可,然后將其代入②,消去一個未知數(shù),化成一元一次方程,進而再求出方程組的解.
解:把①變形為y=4-x、
把③代入②得:數(shù)學公式-數(shù)學公式=1
數(shù)學公式-數(shù)學公式=1,數(shù)學公式=數(shù)學公式-1,數(shù)學公式=數(shù)學公式
∴x=數(shù)學公式
把x=數(shù)學公式代入③得y=4-數(shù)學公式=3數(shù)學公式
所以原方程的解是數(shù)學公式
若想知道解的是否正確,可作如下檢驗:
檢驗:把x=數(shù)學公式,y=3數(shù)學公式代入①得,左邊=x+y=數(shù)學公式+3數(shù)學公式=4,右邊=4.
所以左邊=右邊.
再把x=數(shù)學公式,y=3數(shù)學公式代入②得
左邊數(shù)學公式-數(shù)學公式=數(shù)學公式-數(shù)學公式=數(shù)學公式-數(shù)學公式=1,右邊=1.
所以左邊=右邊.
所以數(shù)學公式是原方程組的解.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

檢驗方程組的解時,必須將求得的未知數(shù)的值代入方程組中的每一個方程.
例1:解方程組
x+y=4
x+y
3
-
x
2
=1

思路分析:本例這兩個方程中①較簡單,且x、y的系數(shù)均為1,故可把①變形,把x用y表示,或把y用x來表示皆可,然后將其代入②,消去一個未知數(shù),化成一元一次方程,進而再求出方程組的解.
把①變形為y=4-x  ③
把③代入②得:
x+4-x
3
-
x
2
=1
4
3
-
x
2
=1,
x
2
=
4
3
-1,
x
2
=
1
3

∴x=
2
3

把x=
2
3
代入③得y=4-
2
3
=3
1
3

所以原方程的解是
x=
2
3
y=3
1
3

若想知道解的是否正確,可作如下檢驗:
檢驗:把x=
2
3
,y=3
1
3
代入①得,左邊=x+y=
2
3
+3
1
3
=4,右邊=4.
所以左邊=右邊.
再把x=
2
3
,y=3
1
3
代入②得
左邊
x+y
3
-
x
2
=
2
3
+3
1
3
3
-
2
3
2
=
4
3
-
1
3
=1,右邊=1.
所以左邊=右邊.
所以
x=
2
3
y=3
1
3
是原方程組的解.

查看答案和解析>>

同步練習冊答案