(1)如圖1,點(diǎn)P是正方形ABCD內(nèi)的一點(diǎn),把△ABP繞點(diǎn)B順時(shí)針方向旋轉(zhuǎn),使點(diǎn)A與點(diǎn)C重合,點(diǎn)P的對(duì)應(yīng)點(diǎn)是Q.若PA=3,PB=2,PC=5,求∠BQC的度數(shù).
(2)點(diǎn)P是等邊三角形ABC內(nèi)的一點(diǎn),若PA=12,PB=5,PC=13,求∠BPA的度數(shù).
解:(1)連接PQ.
由旋轉(zhuǎn)可知:,QC=PA=3.
又∵ABCD是正方形,
∴△ABP繞點(diǎn)B順時(shí)針方向旋轉(zhuǎn)了90°,才使點(diǎn)A與C重合,
即∠PBQ=90°,
∴∠PQB=45°,PQ=4.
則在△PQC中,PQ=4,QC=3,PC=5,
∴PC2=PQ2+QC2.
即∠PQC=90°.
故∠BQC=90°+45°=135°.
(2)將此時(shí)點(diǎn)P的對(duì)應(yīng)點(diǎn)是點(diǎn)P′.
由旋轉(zhuǎn)知,△APB≌△CP′B,即∠BPA=∠BP′C,P′B=PB=5,P′C=PA=12.
又∵△ABC是正三角形,
∴△ABP繞點(diǎn)B順時(shí)針方向旋轉(zhuǎn)60°,才使點(diǎn)A與C重合,
得∠PBP′=60°,
又∵P′B=PB=5,
∴△PBP′也是正三角形,即∠PP′B=60°,PP′=5.
因此,在△PP′C中,PC=13,PP′=5,P′C=12,
∴PC2=PP′2+P′C2.
即∠PP′C=90°.
故∠BPA=∠BP′C=60°+90°=150°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
.為增強(qiáng)市民的節(jié)水意識(shí),某市對(duì)居民用水實(shí)行“階梯收費(fèi)”:規(guī)定每戶每月不超過月用水標(biāo)準(zhǔn)部分的水價(jià)為1.5元/噸,超過月用水標(biāo)準(zhǔn)量部分的水價(jià)為2.5元/噸.該市小明家5月份用水12噸,交水費(fèi)20元.請(qǐng)問:該市規(guī)定的每戶月用水標(biāo)準(zhǔn)量是多少噸?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,將等邊△ABC繞頂點(diǎn)A順時(shí)針方向旋轉(zhuǎn),使邊AB與AC重合得△ACD,BC的中點(diǎn)E的對(duì)應(yīng)點(diǎn)為F,則∠EAF的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)n度后,得到△DEC,點(diǎn)D剛好落在AB邊上.
(1)求n的值;
(2)若F是DE的中點(diǎn),判斷四邊形ACFD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
若實(shí)數(shù)a滿足a﹣|a|=2a,則( 。
A. a>0 B.a(chǎn)<0 C.a(chǎn)≥0 D. a≤0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
若□×(﹣2)=1,則□內(nèi)填一個(gè)實(shí)數(shù)應(yīng)該是( )
A. B.2 C.﹣2 D. ﹣
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com