【題目】如圖,在矩形ABCD中,點O為坐標原點,點B的坐標為(4,3),點A、C在坐標軸上,點P在BC邊上,直線l1:y=2x+3,直線l2:y=2x﹣3.

(1)分別求直線l1與x軸,直線l2與AB的交點坐標;
(2)已知點M在第一象限,且是直線l2上的點,若△APM是等腰直角三角形,求點M的坐標;
(3)我們把直線l1和直線l2上的點所組成的圖形為圖形F.已知矩形ANPQ的頂點N在圖形F上,Q是坐標平面內(nèi)的點,且N點的橫坐標為x,請直接寫出x的取值范圍(不用說明理由).

【答案】
(1)

解:直線l1:當y=0時,2x+3=0,x=﹣

則直線l1與x軸坐標為(﹣ ,0)

直線l2:當y=3時,2x﹣3=3,x=3

則直線l2與AB的交點坐標為(3,3)


(2)

解:①若點A為直角頂點時,點M在第一象限,連結AC,

如圖1,

∠APB>∠ACB>45°,

∴△APM不可能是等腰直角三角形,

∴點M不存在;

②若點P為直角頂點時,點M在第一象限,如圖2,

過點M作MN⊥CB,交CB的延長線于點N,

則Rt△ABP≌Rt△PNM,

∴AB=PN=4,MN=BP,

設M(x,2x﹣3),則MN=x﹣4,

∴2x﹣3=4+3﹣(x﹣4),

x= ,

∴M( );

③若點M為直角頂點時,點M在第一象限,如圖3,

設M1(x,2x﹣3),

過點M1作M1G1⊥OA,交BC于點H1,

則Rt△AM1G1≌Rt△PM1H1,

∴AG1=M1H1=3﹣(2x﹣3),

∴x+3﹣(2x﹣3)=4,

x=2

∴M1(2,1);

設M2(x,2x﹣3),

同理可得x+2x﹣3﹣3=4,

∴x= ,

∴M2 );

綜上所述,點M的坐標為( , ),(2,1),( ,


(3)

解:x的取值范圍為﹣ ≤x<0或0<x≤ ≤x≤ ≤x≤2


【解析】考查了四邊形綜合題,涉及的知識點有:坐標軸上點的坐標特征,等腰直角三角形的性質(zhì),矩形的性質(zhì),分類思想的應用,方程思想的應用,綜合性較強,有一定的難度.(1)根據(jù)坐標軸上點的坐標特征可求直線l1與x軸,直線l2與AB的交點坐標;(2)分三種情況:①若點A為直角頂點時,點M在第一象限;若點P為直角頂點時,點M在第一象限;③若點M為直角頂點時,點M在第一象限;進行討論可求點M的坐標;(3)根據(jù)矩形的性質(zhì)可求N點的橫坐標x的取值范圍.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,A是⊙O上一點,半徑OC的延長線與過點A的直線交于B點,OC=BC,AC= OB.
(1)求證:AB是⊙O的切線;
(2)若∠ACD=45°,OC=2,求弦CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正六邊形的邊心距為 ,這個正六邊形的面積為( )
A.2
B.4
C.6
D.12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,AB=1,AD= ,AF平分∠DAB,過C點作CE⊥BD于E,延長AF.EC交于點H,下列結論中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.正確的是( 。

A.②③
B.③④
C.①②④
D.②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角△ABC中,∠C=90°,∠CAB的平分線AD交BC于D,若DE垂直平分AB,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為4的正方形ABCD中,P是BC邊上一動點(不含B、C兩點),將△ABP沿直線AP翻折,點B落在點E處;在CD上有一點M,使得將△CMP沿直線MP翻折后,點C落在直線PE上的點F處,直線PE交CD于點N,連接MA,NA.則以下結論中正確的有(寫出所有正確結論的序號)
①△CMP∽△BPA;
②四邊形AMCB的面積最大值為10;
③當P為BC中點時,AE為線段NP的中垂線;
④線段AM的最小值為2 ;
⑤當△ABP≌△ADN時,BP=4 ﹣4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,AD是△ABC的中線,∠ADC=45°,把△ADC沿AD對折,使點C落在點C的位置,則圖中的一個等腰直角三角形是( )

A.△ADC′
B.△BDC′
C.△ADC
D.不存在

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,田亮同學用剪刀沿直線將一片平整的樹葉剪掉一部分,發(fā)現(xiàn)剩下樹葉的周長比原樹葉的周長要小,能正確解釋這一現(xiàn)象的數(shù)學知識是( 。
A.垂線段最短
B.經(jīng)過一點有無數(shù)條直線
C.經(jīng)過兩點,有且僅有一條直線
D.兩點之間,線段最短

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個袋子中裝有3個紅球和2個黃球,這些球的形狀、大小.質(zhì)地完全相同,在看不到球的條件下,隨機從袋子里同時摸出2個球,其中2個球的顏色相同的概率是(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案