【題目】如圖,在RtABC中,∠ACB90°.

1)用尺規(guī)在邊AB上求作一點P,使PCPB,并連接PC;(不寫作法,保留作圖痕跡)

2)當AC3,BC4時,△ACP的周長=   ;

【答案】1)見解析 (28

【解析】

1)作CB的垂直平分線交BAP點,連接PC;
2)先利用勾股定理計算出BA5,然后利用PCPB可得到ACP的周長=ACBA8

1)如圖所示,作線段BC的垂直平分線交AB于點P,連接PC,點P為所求作.

2)∵RtABC中,∠ACB90°,AC=3,BC=4,

AB=5,

PD是線段BC的垂直平分線,

PC=PB

∴△ACP的周長為:AC+AP+PC=AC+AP+PB=AC+AB=3+5=8.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在直角三角形ABC中,∠ACB=90°BC的垂直平分線交BCD,交AB于點E,過點AAFCE交直線DE于點F

1)求證:四邊形ACEF是平行四邊形;

2)當∠B的大小滿足什么條件時,四邊形ACEF是菱形?請證明你的結(jié)論;

3)四邊形ACEF有可能是矩形嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A的坐標是Ax,y),從12、3這三個數(shù)中任取一個數(shù)作為x的值,再從余下的兩個數(shù)中任取一個數(shù)作為y的值.則點A落在直線y=﹣x+5與直線yxy軸所圍成的封閉區(qū)域內(nèi)(含邊界)的概率是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用四塊大正方形地磚和一塊小正方形地磚拼成如圖所示的實線圖案,每塊大正方形地磚面積為a,小正方形地磚面積為依次連接四塊大正方形地磚的中心得到正方形ABCD.則正方形ABCD的面積為____________(用含ab的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某校九年級學生的體質(zhì)健康狀況,隨機抽取了該校九年級學生的10%進行測試,將這些學生的測試成績(x)分為四個等級:優(yōu)秀;良好;及格;不及格,并繪制成以下兩幅統(tǒng)計圖.

根據(jù)以上信息,解答下列問題:

1)在抽取的學生中不及格人數(shù)所占的百分比是______;

2)計算所抽取學生測試成績的平均分;

3)若不及格學生的人數(shù)為2人,請估算出該校九年級學生中優(yōu)秀等級的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,拋物線y=-x2+bx+c經(jīng)過點A30)和點B2,3),過點A的直線與y軸的負半軸相交于點C,且tanCAO=

1)求這條拋物線的表達式及對稱軸;

2)聯(lián)結(jié)AB、BC,求∠ABC的正切值;

3)若點Dx軸下方的對稱軸上,當SDBC=SADC時,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】鄂爾多斯市加快國家旅游改革先行示范區(qū)建設,越來越多的游客慕名而來,感受鄂爾多斯市“24℃夏天的獨特魅力”,市旅游局工作人員依據(jù)20167月份鄂爾多斯市各景點的游客數(shù)量,繪制了如下尚不完整的統(tǒng)計圖;

根據(jù)以上信息解答下列問題:

120167月份,鄂爾多斯市共接待游客   萬人,扇形統(tǒng)計圖中烏蘭木倫景觀湖所對應的圓心角的度數(shù)是   ,并補全條形統(tǒng)計圖;

2)預計20177月份約有200萬人選擇來鄂爾多斯市旅游,通過計算預估其中選擇去響沙灣旅游的人數(shù);

3)甲、乙兩個旅行團準備去響沙灣、成吉思汗陵、蒙古源流三個景點旅游,若這三個景點分別記作ab、c,請用樹狀圖或列表法求他們選擇去同一個景點的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果商計劃購進甲、乙兩種水果進行銷售,經(jīng)了解,甲種水果的進價比乙種水果的進價每千克少4元,且用800元購進甲種水果的數(shù)量與用1000元購進乙種水果的數(shù)量相同.

1)求甲、乙兩種水果的單價分別是多少元?

2)該水果商根據(jù)該水果店平常的銷售情況確定,購進兩種水果共200千克,其中甲種水果的數(shù)量不超過乙種水果數(shù)量的3倍,且購買資金不超過3420元,購回后,水果商決定甲種水果的銷售價定為每千克20元,乙種水果的銷售價定為每千克25元,則水果商應如何進貨,才能獲得最大利潤,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學欲開設A實心球、B立定跳遠、C跑步、D足球四種體育活動,為了了解學生們對這些項目的選擇意向,隨機抽取了部分學生,并將調(diào)查結(jié)果繪制成圖1、圖2,請結(jié)合圖中的信息,解答下列問題:

1)本次共調(diào)查了  名學生;

2)將條形統(tǒng)計圖補充完整;

3)求扇形的圓心角的度數(shù);

4)某班喜歡跑步的學生有4名,其中有2名男生,2名女生,現(xiàn)從這4名學生中選取2名,請用畫樹狀圖或列表的方法,求出剛好抽到同性的概率。

查看答案和解析>>

同步練習冊答案