【題目】如圖,Rt△AOB中,∠AOB=90°,OA在x軸上,OB在y軸上,點(diǎn)A,B的坐標(biāo)分別為(,0),(0,1),把Rt△AOB沿著AB對(duì)折得到Rt△AO′B,則點(diǎn)O′的坐標(biāo)為 .
【答案】(,)
【解析】
試題分析:作O′C⊥y軸于點(diǎn)C,首先根據(jù)點(diǎn)A,B的坐標(biāo)分別為(,0),(0,1)得到∠BAO=30°,從而得出∠OBA=60°,然后根據(jù)Rt△AOB沿著AB對(duì)折得到Rt△AO′B,得到∠CBO′=60°,最后設(shè)BC=x,則OC′=x,利用勾股定理求得x的值即可求解.如圖,作O′C⊥y軸于點(diǎn)C,
∵點(diǎn)A,B的坐標(biāo)分別為(,0),(0,1),∴OB=1,OA=,∴tan∠BAO==,
∴∠BAO=30°,∴∠OBA=60°,∵Rt△AOB沿著AB對(duì)折得到Rt△AO′B,∴∠CBO′=60°,
∴設(shè)BC=x,則O′C=x,∴x2+(x)2=1,解得:x=(負(fù)值舍去),所以O′C=
∴OC=OB+BC=1+=,∴點(diǎn)O′的坐標(biāo)為(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在實(shí)數(shù)范圍內(nèi)定義運(yùn)算“♀”,該運(yùn)算同時(shí)滿足下列條件:
(1)x♀x=5,(x≠5);(2)x♀(y♀z)=(x♀y)+z,則2015♀2017的值是( )
A. 2 B. 3 C. 2015 D. 2017
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一小球以15 m/s的速度豎直向上彈出,它在空中的高度h(m)與時(shí)間t(s)滿足關(guān)系h=15t-5t2,則小球經(jīng)過____s達(dá)到10 m高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)三角形的三個(gè)內(nèi)角的度數(shù)比是1 ∶6 ∶5 ,最大的一個(gè)內(nèi)角是__________度,按角分,它是一個(gè)________角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,以AB為直徑的⊙O分別與BC,AC相交于點(diǎn)D,E,BD=CD,過點(diǎn)D作⊙O的切線交邊AC于點(diǎn)F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為5,∠CDF=30°,求的長(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=3,AD=4,動(dòng)點(diǎn)Q從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度,沿AB向點(diǎn)B移動(dòng);同時(shí)點(diǎn)P從點(diǎn)B出發(fā),仍以每秒1個(gè)單位的速度,沿BC向點(diǎn)C移動(dòng),連接QP,QD,PD.若兩個(gè)點(diǎn)同時(shí)運(yùn)動(dòng)的時(shí)間為x秒(0<x≤3),解答下列問題:
(1)設(shè)△QPD的面積為S,用含x的函數(shù)關(guān)系式表示S;當(dāng)x為何值時(shí),S有最大值?并求出最小值;
(2)是否存在x的值,使得QP⊥DP?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的是( 。
A. 三視圖是中心投影
B. 小華觀察牡丹花,牡丹花就是視點(diǎn)
C. 球的三視圖均是半徑相等的圓
D. 陽光從矩形窗子里照射到地面上得到的光區(qū)仍是矩形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AD邊的中點(diǎn),BE⊥AC,垂足為點(diǎn)F,連接DF,分析下列四個(gè)結(jié)論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正確的結(jié)論有( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,若直線y=kx+b經(jīng)過第一、三、四象限,則直線y=bx+k不經(jīng)過的象限是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com